BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36638268)

  • 1. Mimicking the Biological Sense of Taste In Vitro Using a Taste Organoids-on-a-Chip System.
    Wu J; Chen C; Qin C; Li Y; Jiang N; Yuan Q; Duan Y; Liu M; Wei X; Yu Y; Zhuang L; Wang P
    Adv Sci (Weinh); 2023 Mar; 10(7):e2206101. PubMed ID: 36638268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance.
    Song HS; Jin HJ; Ahn SR; Kim D; Lee SH; Kim UK; Simons CT; Hong S; Park TH
    ACS Nano; 2014 Oct; 8(10):9781-9. PubMed ID: 25126667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive Bioelectronic Tongue Based on the Venus Flytrap Domain of a Human Sweet Taste Receptor.
    Jeong JY; Cha YK; Ahn SR; Shin J; Choi Y; Park TH; Hong S
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2478-2487. PubMed ID: 34989242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles.
    Ahn SR; An JH; Song HS; Park JW; Lee SH; Kim JH; Jang J; Park TH
    ACS Nano; 2016 Aug; 10(8):7287-96. PubMed ID: 27327579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection.
    Ahn SR; An JH; Jang IH; Na W; Yang H; Cho KH; Lee SH; Song HS; Jang J; Park TH
    Biosens Bioelectron; 2018 Oct; 117():628-636. PubMed ID: 30005383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection.
    Wei X; Qin C; Gu C; He C; Yuan Q; Liu M; Zhuang L; Wan H; Wang P
    Biosens Bioelectron; 2019 Dec; 145():111673. PubMed ID: 31546200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectronic Tongues Mimicking Insect Taste Systems for Real-Time Discrimination between Natural and Artificial Sweeteners.
    Choi Y; Lee S; Lee S; Hong S; Kwon HW
    ACS Sens; 2022 Dec; 7(12):3682-3691. PubMed ID: 36455033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bioelectronic nose and tongue using olfactory and taste receptors: Analytical tools for food quality and safety assessment.
    Son M; Park TH
    Biotechnol Adv; 2018; 36(2):371-379. PubMed ID: 29289691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-artificial tongue with tongue extracellular matrix and primary taste cells.
    Lee JS; Cho AN; Jin Y; Kim J; Kim S; Cho SW
    Biomaterials; 2018 Jan; 151():24-37. PubMed ID: 29055775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of Umami Tastants Using Floating Electrode-Based Bioelectronic Tongue Mimicking Insect Taste Systems.
    Lee M; Jung JW; Kim D; Ahn YJ; Hong S; Kwon HW
    ACS Nano; 2015 Dec; 9(12):11728-36. PubMed ID: 26563753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic organoids-on-a-chip: The future of human models.
    Saorin G; Caligiuri I; Rizzolio F
    Semin Cell Dev Biol; 2023 Jul; 144():41-54. PubMed ID: 36241560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gastrointestinal organs and organoids-on-a-chip: advances and translation into the clinics.
    Carvalho MR; Yan LP; Li B; Zhang CH; He YL; Reis RL; Oliveira JM
    Biofabrication; 2023 Sep; 15(4):. PubMed ID: 37699408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomimetic bioelectronic tongue: A switch for On- and Off- response of acid sensations.
    Zhang W; Chen P; Zhou L; Qin Z; Gao K; Yao J; Li C; Wang P
    Biosens Bioelectron; 2017 Jun; 92():523-528. PubMed ID: 27836602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and Culture of Lingual Organoids Derived from Adult Mouse Taste Stem Cells.
    Shechtman LA; Piarowski CM; Scott JK; Golden EJ; Gaillard D; Barlow LA
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33871462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioelectronic tongue: Current status and perspectives.
    Wasilewski T; Kamysz W; Gębicki J
    Biosens Bioelectron; 2020 Feb; 150():111923. PubMed ID: 31787451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensity of regionally applied tastes in relation to administration method: an investigation based on the "taste strips" test.
    Manzi B; Hummel T
    Eur Arch Otorhinolaryngol; 2014 Feb; 271(2):411-5. PubMed ID: 24100884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohybrid Tongue for Evaluation of Taste Interaction between Sweetness and Sourness.
    Qin C; Chen C; Yuan Q; Jiang N; Liu M; Duan Y; Wan H; Li R; Zhuang L; Wang P
    Anal Chem; 2022 May; 94(19):6976-6985. PubMed ID: 35503097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wiring taste receptor cells to the central gustatory system.
    Spielman AI; Brand JG
    Oral Dis; 2018 Nov; 24(8):1388-1389. PubMed ID: 29363231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of sweet suppressing agent on gustatory brain evoked potentials generated by taste stimuli.
    Min BC; Sakamoto K
    Appl Human Sci; 1998 Jan; 17(1):9-17. PubMed ID: 9575639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Synthetic Hydrogel, VitroGel
    Cherne MD; Sidar B; Sebrell TA; Sanchez HS; Heaton K; Kassama FJ; Roe MM; Gentry AB; Chang CB; Walk ST; Jutila M; Wilking JN; Bimczok D
    Front Pharmacol; 2021; 12():707891. PubMed ID: 34552484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.