These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36638321)

  • 21. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape Engineering of Oxide Nanoparticles for Heterogeneous Catalysis.
    Zhou Y; Li Y; Shen W
    Chem Asian J; 2016 May; 11(10):1470-88. PubMed ID: 26956929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sp-Hybridized Nitrogen as New Anchoring Sites of Iron Single Atoms to Boost the Oxygen Reduction Reaction.
    Li M; Lv Q; Si W; Hou Z; Huang C
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202208238. PubMed ID: 35879858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphdiyne as a metal-free catalyst for low-temperature CO oxidation.
    Wu P; Du P; Zhang H; Cai C
    Phys Chem Chem Phys; 2014 Mar; 16(12):5640-8. PubMed ID: 24519135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uniform single atomic Cu
    Yu J; Cao C; Jin H; Chen W; Shen Q; Li P; Zheng L; He F; Song W; Li Y
    Natl Sci Rev; 2022 Sep; 9(9):nwac018. PubMed ID: 36285293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fundament and Application of Graphdiyne in Electrochemical Energy.
    Du Y; Zhou W; Gao J; Pan X; Li Y
    Acc Chem Res; 2020 Feb; 53(2):459-469. PubMed ID: 32022537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbide-Supported Au Catalysts for Water-Gas Shift Reactions: A New Territory for the Strong Metal-Support Interaction Effect.
    Dong J; Fu Q; Jiang Z; Mei B; Bao X
    J Am Chem Soc; 2018 Oct; 140(42):13808-13816. PubMed ID: 30281304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphdiyne-Based Single-Atom Catalysts with Different Coordination Environments.
    Fu X; Zhao X; Lu TB; Yuan M; Wang M
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202219242. PubMed ID: 36723492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lattice oxygen self-spillover on reducible oxide supported metal cluster: the water-gas shift reaction on Cu/CeO
    Su YQ; Xia GJ; Qin Y; Ding S; Wang YG
    Chem Sci; 2021 May; 12(23):8260-8267. PubMed ID: 34194718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and Applications of Graphdiyne-Based Metal-Free Catalysts.
    Zuo Z; Wang D; Zhang J; Lu F; Li Y
    Adv Mater; 2019 Mar; 31(13):e1803762. PubMed ID: 30259581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electronic Metal-Support Interactions Between Cu
    Lyu S; Zhang Y; Li Z; Liu X; Tian Z; Liu C; Li J; Wang L
    Front Chem; 2022; 10():912550. PubMed ID: 35646814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomimetic design of graphdiyne supported hemin for enhanced peroxidase-like activity.
    Wang T; Bi X; Wang L; Liu M; Yu WW; Zhu Z; Sui N
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):470-478. PubMed ID: 34509729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoparticles for heterogeneous catalysis: new mechanistic insights.
    Schauermann S; Nilius N; Shaikhutdinov S; Freund HJ
    Acc Chem Res; 2013 Aug; 46(8):1673-81. PubMed ID: 23252628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon Monoxide Oxidation over rGO-Mediated Gold/Cobalt Oxide Catalysts with Strong Metal-Support Interaction.
    Xie S; Liu Y; Deng J; Yang J; Zhao X; Han Z; Zhang K; Lu Y; Liu F; Dai H
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31467-31476. PubMed ID: 32558541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu
    Lee SW; Hong JW; Lee H; Wi DH; Kim SM; Han SW; Park JY
    Nanoscale; 2018 Jun; 10(23):10835-10843. PubMed ID: 29694476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. General Synergistic Hybrid Catalyst Synthesis Method Using a Natural Enzyme Scaffold-Confined Metal Nanocluster.
    Lu X; Liu Z; Zhang JR; Zhou Y; Wang L; Zhu JJ
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):761-771. PubMed ID: 36580579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding and application of metal-support interactions in catalysts for CO-PROX.
    Xiang G; Huo J; Liu Z
    Phys Chem Chem Phys; 2022 Aug; 24(31):18454-18468. PubMed ID: 35913070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity.
    Qi H; Yu P; Wang Y; Han G; Liu H; Yi Y; Li Y; Mao L
    J Am Chem Soc; 2015 Apr; 137(16):5260-3. PubMed ID: 25871853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Accommodation Induced Electronic Metal-Support Interaction on Ruthenium Site for Alkaline Hydrogen Evolution Reaction.
    Li C; Kim SH; Lim HY; Sun Q; Jiang Y; Noh HJ; Kim SJ; Baek J; Kwak SK; Baek JB
    Adv Mater; 2023 May; 35(21):e2301369. PubMed ID: 36853204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.