These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 3663840)
1. Self-association of adenosine 5'-monophosphate (5'-AMP) as a function of pH and in comparison with adenosine, 2'-AMP and 3'-AMP. Tribolet R; Sigel H Biophys Chem; 1987 Aug; 27(2):119-30. PubMed ID: 3663840 [TBL] [Abstract][Full Text] [Related]
2. Influence of the protonation degree on the self-association properties of adenosine 5'-triphosphate (ATP). Tribolet R; Sigel H Eur J Biochem; 1988 Jan; 170(3):617-26. PubMed ID: 2828046 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the self-association properties of the 5'-triphosphates of inosine (ITP), guanosine (GTP), and adenosine (ATP). Further evidence for ionic interactions in the highly stable dimeric [H2(ATP)]2(4-) stack. Corfù NA; Tribolet R; Sigel H Eur J Biochem; 1990 Aug; 191(3):721-35. PubMed ID: 2167851 [TBL] [Abstract][Full Text] [Related]
4. Self-association and protonation of adenosine 5'-monophosphate in comparison with its 2'- and 3'-analogues and tubercidin 5'-monophosphate (7-deaza-AMP). Tribolet R; Sigel H Eur J Biochem; 1987 Mar; 163(2):353-63. PubMed ID: 3028802 [TBL] [Abstract][Full Text] [Related]
5. On the metal-ion coordinating properties of the 5'-monophosphates of 1, N6-ethenoadenosine (epsilon-AMP), adenosine and uridine. Comparison of the macrochelate formation in the complexes of epsilon-AMP, AMP, ADP and ATP. Sigel H; Scheller KH Eur J Biochem; 1984 Jan; 138(2):291-9. PubMed ID: 6321171 [TBL] [Abstract][Full Text] [Related]
6. Stabilities and isomeric equilibria in aqueous solution of monomeric metal ion complexes of adenosine 5'-diphosphate (ADP3-) in comparison with those of adenosine 5'-monophosphate (AMP2-). Bianchi EM; Sajadi SA; Song B; Sigel H Chemistry; 2003 Feb; 9(4):881-92. PubMed ID: 12584703 [TBL] [Abstract][Full Text] [Related]
7. Acid-base properties of nucleosides and nucleotides as a function of concentration. Comparison of the proton affinity of the nucleic base residues in the monomeric and self-associated, oligomeric 5'-triphosphates of inosine (ITP), guanosine (GTP), and adenosine (ATP). Corfù NA; Sigel H Eur J Biochem; 1991 Aug; 199(3):659-69. PubMed ID: 1868851 [TBL] [Abstract][Full Text] [Related]
8. Lead(II)-binding properties of the 5'-monophosphates of adenosine (AMP2-), inosine (IMP2-), and guanosine (GMP2-) in aqueous solution. Evidence for nucleobase-lead(II) interactions. Da Costa CP; Sigel H Inorg Chem; 2000 Dec; 39(26):5985-93. PubMed ID: 11151499 [TBL] [Abstract][Full Text] [Related]
9. Metal-ion-governed molecular recognition: extent of intramolecular stack formation in mixed-ligand--copper(II) complexes containing a heteroaromatic N base and an adenosine monophosphate (2'AMP, 3'AMP, or 5'AMP). A structuring effect of the metal-ion bridge. Massoud SS; Tribolet R; Sigel H Eur J Biochem; 1990 Jan; 187(2):387-93. PubMed ID: 2298216 [TBL] [Abstract][Full Text] [Related]
10. Homology-model-guided site-specific mutagenesis reveals the mechanisms of substrate binding and product-regulation of adenosine kinase from Leishmania donovani. Datta R; Das I; Sen B; Chakraborty A; Adak S; Mandal C; Datta AK Biochem J; 2006 Feb; 394(Pt 1):35-42. PubMed ID: 16271040 [TBL] [Abstract][Full Text] [Related]
11. Self-association of nucleotides. Effects of protonation and metal ion coordination. Sigel H Biol Trace Elem Res; 1989; 21():49-59. PubMed ID: 2484632 [TBL] [Abstract][Full Text] [Related]
12. Intramolecular stacking interactions in ternary copper(II) complexes formed by a heteroaromatic amine and 9-[2-(2-phosphonoethoxy)ethyl]adenine, a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine. Fernández-Botello A; Holý A; Moreno V; Sigel H J Inorg Biochem; 2004 Dec; 98(12):2114-24. PubMed ID: 15541501 [TBL] [Abstract][Full Text] [Related]
13. Self-association of 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP) and promotion by metal ions. Scheller KH; Sigel H Eur J Biochem; 1986 May; 157(1):147-53. PubMed ID: 3709530 [TBL] [Abstract][Full Text] [Related]
14. On the interaction of caffeine with nucleic acids. III. 1H NMR studies of caffeine--5'-adenosine monophosphate and caffeine-poly(riboadenylate) interactions. Fritzsche H; Petri I; Schütz H; Weller K; Sedmera P; Lang H Biophys Chem; 1980 Feb; 11(1):109-19. PubMed ID: 7357061 [TBL] [Abstract][Full Text] [Related]
15. Metal-nucleotide interactions: crystal structures of alkali (Li+, Na+, K+) and alkaline earth (Ca2+, Mg2+) metal complexes of adenosine 2'-monophosphate. Padiyar GS; Seshadri TP J Biomol Struct Dyn; 1998 Feb; 15(4):803-21. PubMed ID: 9514255 [TBL] [Abstract][Full Text] [Related]
16. The assisted self-association of ATP4- by a poly(amino acid) [poly(Lys)] and its significance for cell organelles that contain high concentrations of nucleotides. Sigel H; Corfù NA Eur J Biochem; 1996 Sep; 240(3):508-17. PubMed ID: 8856048 [TBL] [Abstract][Full Text] [Related]
17. Understanding the acid-base properties of adenosine: the intrinsic basicities of N1, N3 and N7. Kapinos LE; Operschall BP; Larsen E; Sigel H Chemistry; 2011 Jul; 17(29):8156-64. PubMed ID: 21626581 [TBL] [Abstract][Full Text] [Related]
18. [Study of intermolecular interactions and self-organization of adenylic nucleotides by the spin label method]. Petrov AI; Sukhorukov BI Mol Biol (Mosk); 1980; 14(2):439-47. PubMed ID: 6247647 [TBL] [Abstract][Full Text] [Related]
19. A proton nuclear-magnetic-resonance study of self-stacking in purine and pyrimidine nucleosides and nucleotides. Mitchell PR; Sigel H Eur J Biochem; 1978 Jul; 88(1):149-54. PubMed ID: 668705 [TBL] [Abstract][Full Text] [Related]
20. Regulation of human neutrophil functions by adenine nucleotides. McGarrity ST; Stephenson AH; Webster RO J Immunol; 1989 Mar; 142(6):1986-94. PubMed ID: 2537867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]