BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36638532)

  • 1. The distortions of the free water model for diffusion MRI data when assuming single compartment relaxometry and proton density.
    Ferizi U; Müller-Oehring EM; Peterson ET; Pohl KM
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36638532
    [No Abstract]   [Full Text] [Related]  

  • 2. MTE-NODDI: Multi-TE NODDI for disentangling non-T2-weighted signal fractions from compartment-specific T2 relaxation times.
    Gong T; Tong Q; He H; Sun Y; Zhong J; Zhang H
    Neuroimage; 2020 Aug; 217():116906. PubMed ID: 32387626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data.
    Guo F; Leemans A; Viergever MA; Dell'Acqua F; De Luca A
    Neuroimage; 2020 Sep; 218():116948. PubMed ID: 32428705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T
    Veraart J; Novikov DS; Fieremans E
    Neuroimage; 2018 Nov; 182():360-369. PubMed ID: 28935239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions.
    Eichner C; Paquette M; Mildner T; Schlumm T; Pléh K; Samuni L; Crockford C; Wittig RM; Jäger C; Möller HE; Friederici AD; Anwander A
    Neuroimage; 2020 Nov; 221():117172. PubMed ID: 32682095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolving bundle-specific intra-axonal T
    Barakovic M; Tax CMW; Rudrapatna U; Chamberland M; Rafael-Patino J; Granziera C; Thiran JP; Daducci A; Canales-Rodríguez EJ; Jones DK
    Neuroimage; 2021 Feb; 227():117617. PubMed ID: 33301934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.
    Molina-Romero M; Gómez PA; Sperl JI; Czisch M; Sämann PG; Jones DK; Menzel MI; Menze BH
    Magn Reson Med; 2018 Nov; 80(5):2155-2172. PubMed ID: 29573009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution diffusion-weighted imaging at 7 Tesla: Single-shot readout trajectories and their impact on signal-to-noise ratio, spatial resolution and accuracy.
    Feizollah S; Tardif CL
    Neuroimage; 2023 Jul; 274():120159. PubMed ID: 37150332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separating blood and water: Perfusion and free water elimination from diffusion MRI in the human brain.
    Rydhög AS; Szczepankiewicz F; Wirestam R; Ahlgren A; Westin CF; Knutsson L; Pasternak O
    Neuroimage; 2017 Aug; 156():423-434. PubMed ID: 28412443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Undersampled single-shell to MSMT fODF reconstruction using CNN-based ODE solver.
    Jha RR; Kumar BVR; Pathak SK; Schneider W; Bhavsar A; Nigam A
    Comput Methods Programs Biomed; 2023 Mar; 230():107339. PubMed ID: 36682110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values.
    Wilkins B; Lee N; Gajawelli N; Law M; Leporé N
    Neuroimage; 2015 Apr; 109():341-56. PubMed ID: 25555998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T
    McPhee KC; Wilman AH
    Magn Reson Med; 2019 Mar; 81(3):2052-2063. PubMed ID: 30338866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-compartment relaxometry and diffusion informed myelin water imaging - Promises and challenges of new gradient echo myelin water imaging methods.
    Chan KS; Marques JP
    Neuroimage; 2020 Nov; 221():117159. PubMed ID: 32663644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MESMERISED: Super-accelerating T
    Fritz FJ; Poser BA; Roebroeck A
    Neuroimage; 2021 Oct; 239():118285. PubMed ID: 34147632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI.
    Nunes D; Cruz TL; Jespersen SN; Shemesh N
    J Magn Reson; 2017 Apr; 277():117-130. PubMed ID: 28282586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simulation-driven supervised learning framework to estimate brain microstructure using diffusion MRI.
    Fang C; Yang Z; Wassermann D; Li JR
    Med Image Anal; 2023 Dec; 90():102979. PubMed ID: 37827109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter estimation using macroscopic diffusion MRI signal models.
    Nguyen HT; Grebenkov D; Van Nguyen D; Poupon C; Le Bihan D; Li JR
    Phys Med Biol; 2015 Apr; 60(8):3389-413. PubMed ID: 25831194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of diffusion, perfusion and fractional volumes using a multi-compartment relaxation-compensated intravoxel incoherent motion (IVIM) signal model.
    Rydhög A; Pasternak O; Ståhlberg F; Ahlgren A; Knutsson L; Wirestam R
    Eur J Radiol Open; 2019; 6():198-205. PubMed ID: 31193664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust and fast nonlinear optimization of diffusion MRI microstructure models.
    Harms RL; Fritz FJ; Tobisch A; Goebel R; Roebroeck A
    Neuroimage; 2017 Jul; 155():82-96. PubMed ID: 28457975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical compartment models for single-shell diffusion MRI in the human brain: a model fitting comparison.
    Davis AD; Hassel S; Arnott SR; Hall GB; Harris JK; Zamyadi M; Downar J; Frey BN; Lam RW; Kennedy SH; Strother SC
    Phys Med Biol; 2022 Feb; 67(5):. PubMed ID: 34965517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.