These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36638635)

  • 21. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.
    Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P
    J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microtensile properties and failure mechanisms of cortical bone at the lamellar level.
    Casari D; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Jan; 120():135-145. PubMed ID: 32428682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A stochastic micro to macro mechanical model for the evolution of bone-implant interface stiffness.
    Xie J; Rittel D; Shemtov-Yona K; Shah FA; Palmquist A
    Acta Biomater; 2021 Sep; 131():415-423. PubMed ID: 34129958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix.
    Schwiedrzik J; Taylor A; Casari D; Wolfram U; Zysset P; Michler J
    Acta Biomater; 2017 Sep; 60():302-314. PubMed ID: 28754646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106472. PubMed ID: 38432183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions.
    Niebur GL; Yuen JC; Burghardt AJ; Keaveny TM
    J Biomech; 2001 May; 34(5):699-706. PubMed ID: 11311712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of compressive failure process of cortical bone materials using damage-based model.
    Ng TP; R Koloor SS; Djuansjah JRP; Abdul Kadir MR
    J Mech Behav Biomed Mater; 2017 Feb; 66():1-11. PubMed ID: 27825047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone.
    Al-Qudsy L; Hu YW; Xu H; Yang PF
    ACS Biomater Sci Eng; 2023 May; 9(5):2203-2219. PubMed ID: 37075172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking.
    Siegmund T; Allen MR; Burr DB
    J Biomech; 2008; 41(7):1427-35. PubMed ID: 18406410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physically based 3D finite element model of a single mineralized collagen microfibril.
    Hambli R; Barkaoui A
    J Theor Biol; 2012 May; 301():28-41. PubMed ID: 22365909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microscale compressive behavior of hydrated lamellar bone at high strain rates.
    Peruzzi C; Ramachandramoorthy R; Groetsch A; Casari D; Grönquist P; Rüggeberg M; Michler J; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():403-414. PubMed ID: 34245895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response.
    Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P
    J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.
    Nikolov S; Raabe D
    Biophys J; 2008 Jun; 94(11):4220-32. PubMed ID: 18310256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of the Johnson-Cook plasticity model in the finite element simulations of the nanoindentation of the cortical bone.
    Remache D; Semaan M; Rossi JM; Pithioux M; Milan JL
    J Mech Behav Biomed Mater; 2020 Jan; 101():103426. PubMed ID: 31557661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elucidating the role of diverse mineralisation paradigms on bone biomechanics - a coarse-grained molecular dynamics investigation.
    Tavakol M; Vaughan TJ
    Nanoscale; 2024 Feb; 16(6):3173-3184. PubMed ID: 38259246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.