BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36638753)

  • 1. High performance isolation of circulating tumor cells by acoustofluidic chip coupled with ultrasonic concentrated energy transducer.
    Qiu H; Wang H; Yang X; Huo F
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113138. PubMed ID: 36638753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-TSAW) for label-free isolation of living circulating tumor cells.
    Geng W; Liu Y; Yu N; Qiao X; Ji M; Niu Y; Niu L; Fu W; Zhang H; Bi K; Chou X
    Anal Chim Acta; 2023 May; 1255():341138. PubMed ID: 37032055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-Free Separation of Circulating Tumor Cells and Clusters by Alternating Frequency Acoustic Field in a Microfluidic Chip.
    Zhang Y; Zhang Z; Zheng D; Huang T; Fu Q; Liu Y
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing (SAIF) Microfluidic Chip.
    Abdulla A; Zhang T; Ahmad KZ; Li S; Lou J; Ding X
    Anal Chem; 2020 Dec; 92(24):16170-16179. PubMed ID: 33232155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct separation and enumeration of CTCs in viscous blood based on co-flow microchannel with tunable shear rate: a proof-of-principle study.
    Li M; Ge C; Yang Y; Gan M; Xu Y; Chen L; Li S
    Anal Bioanal Chem; 2022 Nov; 414(26):7683-7694. PubMed ID: 36048191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive Optical Isolation and Identification of Circulating Tumor Cells Engineered by Fluorescent Microspheres.
    Chen B; Zheng J; Gao K; Hu X; Guo SS; Zhao XZ; Liao F; Yang Y; Liu W
    ACS Appl Bio Mater; 2022 Jun; 5(6):2768-2776. PubMed ID: 35537085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submicron separation of microspheres via travelling surface acoustic waves.
    Destgeer G; Ha BH; Jung JH; Sung HJ
    Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Circulating Tumor Cells by Fluorescence Microspheres-Mediated Amplification.
    Yin J; Deng J; Wang L; Du C; Zhang W; Jiang X
    Anal Chem; 2020 May; 92(10):6968-6976. PubMed ID: 32347710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistage microfluidic cell sorting method and chip based on size and stiffness.
    Li G; Ji Y; Wu Y; Liu Y; Li H; Wang Y; Chi M; Sun H; Zhu H
    Biosens Bioelectron; 2023 Oct; 237():115451. PubMed ID: 37327603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.
    Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X
    Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAIF: Label-Free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing Microfluidic Chip.
    Abdulla A; Ding X
    Methods Mol Biol; 2023; 2679():207-218. PubMed ID: 37300618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Throughput Circular Tumor Cell Sorting Chip with Trapezoidal Cross Section.
    Lu S; Ma D; Mi X
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics.
    Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L
    Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective cell trapping using PDMS microspheres in an acoustofluidic chip.
    Yin D; Xu G; Wang M; Shen M; Xu T; Zhu X; Shi X
    Colloids Surf B Biointerfaces; 2017 Sep; 157():347-354. PubMed ID: 28622655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-resolved counting of circulating tumor cells on pinched flow-based microfluidic cytometry.
    Xia L; Zhou W; Huang J; Dong J; Xiao X; Li G
    Electrophoresis; 2023 Jan; 44(1-2):82-88. PubMed ID: 36031791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The acoustofluidic focusing and separation of rare tumor cells using transparent lithium niobate transducers.
    Wu Z; Jiang H; Zhang L; Yi K; Cui H; Wang F; Liu W; Zhao X; Zhou F; Guo S
    Lab Chip; 2019 Dec; 19(23):3922-3930. PubMed ID: 31693035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cascaded Phase-Transfer Microfluidic Chip with Magnetic Probe for High-Activity Sorting, Purification, Release, and Detection of Circulating Tumor Cells.
    Nian M; Chen B; He M; Hu B
    Anal Chem; 2024 Jan; 96(2):766-774. PubMed ID: 38158582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.