These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 3663876)

  • 1. The melting behavior of a DNA junction structure: a calorimetric and spectroscopic study.
    Marky LA; Kallenbach NR; McDonough KA; Seeman NC; Breslauer KJ
    Biopolymers; 1987 Sep; 26(9):1621-34. PubMed ID: 3663876
    [No Abstract]   [Full Text] [Related]  

  • 2. Impact of the third-strand orientation on the thermodynamic stability of the four-way DNA junction.
    Makube N; Klump HH
    Arch Biochem Biophys; 2001 Sep; 393(1):1-13. PubMed ID: 11516156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic properties of an intramolecular DNA four-way junction.
    Makube N; Klump H; Pikkemaat J; Altona C
    Arch Biochem Biophys; 1999 Apr; 364(1):53-60. PubMed ID: 10087164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of DNA dumbbells VIII. Melting analysis of DNA dumbbells with dinucleotide repeat stem sequences.
    Mandell KE; Vallone PM; Owczarzy R; Riccelli PV; Benight AS
    Biopolymers; 2006 Jun; 82(3):199-221. PubMed ID: 16345003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic characterization of a triple-helical three-way junction containing a Hoogsteen branch point.
    Hüsler PL; Klump HH
    Arch Biochem Biophys; 1995 Sep; 322(1):149-66. PubMed ID: 7574670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic, kinetic, and conformational properties of a parallel intermolecular DNA triplex containing 5' and 3' junctions.
    Asensio JL; Dosanjh HS; Jenkins TC; Lane AN
    Biochemistry; 1998 Oct; 37(43):15188-98. PubMed ID: 9790683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution calorimetric and optical melting profiles of DNA plasmids: resolving contributions from intrinsic melting domains and specifically designed inserts.
    Völker J; Blake RD; Delcourt SG; Breslauer KJ
    Biopolymers; 1999 Sep; 50(3):303-18. PubMed ID: 10397791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melting of DNA in ethanol-water solutions.
    Usatyi AF; Shlyakhtenko LS
    Biopolymers; 1974 Dec; 13(12):2435-46. PubMed ID: 4441603
    [No Abstract]   [Full Text] [Related]  

  • 9. Impact of the oxidized guanine lesion spiroiminodihydantoin on the conformation and thermodynamic stability of a 15-mer DNA duplex.
    Chinyengetere F; Jamieson ER
    Biochemistry; 2008 Feb; 47(8):2584-91. PubMed ID: 18281959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the formation of DNA triplex and effect of chemical modifications on its stability as studied by isothermal titration calorimetry.
    Kamiya M; Shimizume R; Shindo H; Torigoe H; Sarai A
    Nucleic Acids Symp Ser; 1995; (34):57-8. PubMed ID: 8841550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA sequence context modulates the impact of a cisplatin 1,2-d(GpG) intrastrand cross-link on the conformational and thermodynamic properties of duplex DNA.
    Pilch DS; Dunham SU; Jamieson ER; Lippard SJ; Breslauer KJ
    J Mol Biol; 2000 Feb; 296(3):803-12. PubMed ID: 10677282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of strand-separated DNA in different environments studied by linear dichroism.
    Nordén B; Seth S
    Biopolymers; 1979 Sep; 18(9):2323-39. PubMed ID: 526553
    [No Abstract]   [Full Text] [Related]  

  • 13. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix.
    Völker J; Osborne SE; Glick GD; Breslauer KJ
    Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length-dependent energetics of (CTG)n and (CAG)n trinucleotide repeats.
    Amrane S; Saccà B; Mills M; Chauhan M; Klump HH; Mergny JL
    Nucleic Acids Res; 2005; 33(13):4065-77. PubMed ID: 16040598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Superhelical structure and optical activity of compact particles of circular DNA].
    Evdokimov IuM; Salianov VI; Tsekhanovskaia NA
    Dokl Akad Nauk SSSR; 1980; 251(4):992-4. PubMed ID: 7398534
    [No Abstract]   [Full Text] [Related]  

  • 16. Stability of DNA duplexes containing GG, CC, AA, and TT mismatches.
    Tikhomirova A; Beletskaya IV; Chalikian TV
    Biochemistry; 2006 Sep; 45(35):10563-71. PubMed ID: 16939208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic and calorimetric characterizations of DNA duplexes containing 2-aminopurine.
    Law SM; Eritja R; Goodman MF; Breslauer KJ
    Biochemistry; 1996 Sep; 35(38):12329-37. PubMed ID: 8823167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific binding of hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies.
    Haq I; Ladbury JE; Chowdhry BZ; Jenkins TC; Chaires JB
    J Mol Biol; 1997 Aug; 271(2):244-57. PubMed ID: 9268656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Calorimetric study of the denaturation of chromatin and its components].
    Madzhagaladze GV; Monaselidze DR; Chanchalashvili ZI
    Biofizika; 1985; 30(5):917-9. PubMed ID: 4052490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linkage of proton binding to the thermal dissociation of triple helix complex.
    Petraccone L; Erra E; Mattia CA; Fedullo V; Barone G; Giancola C
    Biophys Chem; 2004 Jul; 110(1-2):73-81. PubMed ID: 15223145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.