BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36638929)

  • 1. Tailoring enzymatic loading capacity on CdS nanorods@ZnIn
    Hu R; Xu BF; Xue Y; Xu ZZ; Wang AJ; Mei LP; Song P; Feng JJ
    Chemosphere; 2023 Mar; 316():137808. PubMed ID: 36638929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A SnO
    Liu X; Jiang Y; Luo J; Guo X; Ying Y; Wen Y; Yang H; Wu Y
    Food Chem; 2021 May; 344():128716. PubMed ID: 33267988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Turn-off" photoelectrochemical aptasensor based on g-C
    Qiao L; Zhu Y; Zeng T; Zhang Y; Zhang M; Song K; Yin N; Tao Y; Zhao Y; Zhang Y; Zhang C
    Food Chem; 2023 Mar; 403():134287. PubMed ID: 36183467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-sensitized heterojunction Ag
    Jin Y; Yu W; Chen L; Yuan R; Liu J; Fu Y; Chai Y
    Biosens Bioelectron; 2024 Sep; 260():116459. PubMed ID: 38838575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-powered photoelectrochemical aptasensor based on hollow tubular g-C
    Zhang Y; Zhu Y; Zeng T; Qiao L; Zhang M; Song K; Yin N; Tao Y; Zhao Y; Zhang C; Zhang Y
    Anal Chim Acta; 2023 Apr; 1250():340951. PubMed ID: 36898823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-electrodeposited amorphous MoS
    Shang M; Zhang J; Qi H; Gao Y; Yan J; Song W
    Biosens Bioelectron; 2019 Jul; 136():53-59. PubMed ID: 31035027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Z-scheme Cu
    Wei JJ; Wang GQ; Zheng JY; Yang HY; Wang AJ; Mei LP; Feng JJ; Cheang TY
    Biosens Bioelectron; 2023 Jun; 230():115293. PubMed ID: 37028001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel "turn-off" photoelectrochemical aptasensing platform for selective detection of tobramycin based on the Ti
    Qi X; Zhao X
    RSC Adv; 2023 Aug; 13(34):23690-23699. PubMed ID: 37555099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of CuS/ZnIn
    Yang HY; Wei JJ; Zheng JY; Ai QY; Wang AJ; Feng JJ
    Talanta; 2023 Aug; 260():124631. PubMed ID: 37163924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A photoelectrochemical aptasensor based on p-n heterojunction CdS-Cu
    Kong W; Qu F; Lu L
    Anal Bioanal Chem; 2020 Feb; 412(4):841-848. PubMed ID: 31897553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework.
    Zhang Y; Li B; Wei X; Gu Q; Chen M; Zhang J; Mo S; Wang J; Xue L; Ding Y; Wu Q
    Mikrochim Acta; 2021 Aug; 188(8):286. PubMed ID: 34345968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal-On Near-Infrared Photoelectrochemical Aptasensors for Sensing VEGF165 Based on Ionic Liquid-Functionalized Nd-MOF Nanorods and In-Site Formation of Gold Nanoparticles.
    Zhong Y; Zha R; Li W; Lu C; Zong Y; Sun D; Li C; Wang Y
    Anal Chem; 2022 Dec; 94(51):17835-17842. PubMed ID: 36508733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Paper-Based Photoelectrochemical Sensing Platform Based on In Situ Grown ZnO/ZnIn
    Huang J; Li X; Xiu M; Huang K; Cui K; Zhang J; Ge S; Hao S; Yu J; Huang Y
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive photoelectrochemical aptasensor for detecting telomerase activity based on Ag
    Zhu JH; Gou H; Zhao T; Mei LP; Wang AJ; Feng JJ
    Biosens Bioelectron; 2022 May; 203():114048. PubMed ID: 35121445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ZnIn
    Liu XP; Tang YY; Chen JS; Mao CJ; Jin BK
    Chem Commun (Camb); 2023 Dec; 59(100):14847-14850. PubMed ID: 38015452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-powered photoelectrochemical aptasensor based on MIL-68(In) derived In
    Ding H; Feng Y; Xu Y; Xue X; Feng R; Yan T; Yan L; Wei Q
    Talanta; 2022 Apr; 240():123153. PubMed ID: 34973550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label free aptasensor for ultrasensitive detection of tobramycin residue in pasteurized cow's milk based on resonance scattering spectra and nanogold catalytic amplification.
    Yan S; Lai X; Wang Y; Ye N; Xiang Y
    Food Chem; 2019 Oct; 295():36-41. PubMed ID: 31174769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel label-free colorimetric polyA aptasensing approach based on cationic polymer and silver nanoparticles for detection of tobramycin in milk.
    Mahjub R; Shayesteh OH; Derakhshandeh K; Ranjbar A; Mehri F; Heshmati A
    Food Chem; 2022 Jul; 382():132580. PubMed ID: 35247665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing.
    Deng W; Shen L; Wang X; Yang C; Yu J; Yan M; Song X
    Biosens Bioelectron; 2016 Aug; 82():132-9. PubMed ID: 27088368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of perylene assembly shapes on photoelectrochemical properties and ultrasensitive biosensing behaviors toward dopamine.
    Chi KN; Liu JW; Guan Y; Li QX; Yang T; Hu R; Yang YH
    Anal Bioanal Chem; 2023 Sep; 415(23):5845-5854. PubMed ID: 37528268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.