BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36638936)

  • 1. Orientation-dependent indentation reveals the crosslink-mediated deformation mechanisms of collagen fibrils.
    Ostadi Moghaddam A; Arshee MR; Lin Z; Sivaguru M; Phillips H; McFarlin BL; Toussaint KC; Wagoner Johnson AJ
    Acta Biomater; 2023 Mar; 158():347-357. PubMed ID: 36638936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An indentation-based framework for probing the glycosaminoglycan-mediated interactions of collagen fibrils.
    Ostadi Moghaddam A; Arshee MR; Lin Z; Sivaguru M; Phillips H; McFarlin BL; Toussaint KC; Wagoner Johnson AJ
    J Mech Behav Biomed Mater; 2023 Apr; 140():105726. PubMed ID: 36827935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix.
    Shi L; Hu L; Lee N; Fang S; Myers K
    Acta Biomater; 2022 Sep; 150():277-294. PubMed ID: 35931278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils.
    Yang F; Das D; Karunakaran K; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2023 Jun; 163():63-77. PubMed ID: 35259515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the inelastic response of collagen fibrils: A viscoelastic-plastic constitutive model.
    Fontenele FF; Bouklas N
    Acta Biomater; 2023 Jun; 163():78-90. PubMed ID: 35835288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.
    Baldwin SJ; Sampson J; Peacock CJ; Martin ML; Veres SP; Lee JM; Kreplak L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103849. PubMed ID: 32501220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue.
    Goh KL; Holmes DF
    Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28441344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon.
    Szczesny SE; Elliott DM
    Acta Biomater; 2014 Jun; 10(6):2582-90. PubMed ID: 24530560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.
    Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P
    J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures.
    Dong S; Huang Z; Tang L; Zhang X; Zhang Y; Jiang Y
    Comput Methods Biomech Biomed Engin; 2017 Jul; 20(9):991-1003. PubMed ID: 28441880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point.
    Lin AH; Slater CA; Martinez CJ; Eppell SJ; Yu SM; Weiss JA
    Acta Biomater; 2023 Jan; 155():461-470. PubMed ID: 36400348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The elasto-plastic nano- and microscale compressive behaviour of rehydrated mineralised collagen fibres.
    Groetsch A; Gourrier A; Casari D; Schwiedrzik J; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Jul; 164():332-345. PubMed ID: 37059408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for defining tissue injury criteria reveals that ligament deformation thresholds are multimodal.
    Luetkemeyer CM; Neu CP; Calve S
    Acta Biomater; 2023 Sep; 168():252-263. PubMed ID: 37433358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DTAF dye concentrations commonly used to measure microscale deformations in biological tissues alter tissue mechanics.
    Szczesny SE; Edelstein RS; Elliott DM
    PLoS One; 2014; 9(6):e99588. PubMed ID: 24915570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach.
    Maghsoudi-Ganjeh M; Lin L; Wang X; Zeng X
    Biomech Model Mechanobiol; 2019 Apr; 18(2):463-478. PubMed ID: 30470944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up.
    Gautieri A; Vesentini S; Redaelli A; Buehler MJ
    Nano Lett; 2011 Feb; 11(2):757-66. PubMed ID: 21207932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.
    Fang F; Lake SP
    J Mech Behav Biomed Mater; 2016 Oct; 63():443-455. PubMed ID: 27472764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation micromechanisms of collagen fibrils under uniaxial tension.
    Tang Y; Ballarini R; Buehler MJ; Eppell SJ
    J R Soc Interface; 2010 May; 7(46):839-50. PubMed ID: 19897533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening.
    Liu J; Das D; Yang F; Schwartz AG; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2018 Oct; 80():217-227. PubMed ID: 30240954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.