These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36639417)
1. Contrasting impacts of dry versus humid heat on US corn and soybean yields. Ting M; Lesk C; Liu C; Li C; Horton RM; Coffel ED; Rogers CDW; Singh D Sci Rep; 2023 Jan; 13(1):710. PubMed ID: 36639417 [TBL] [Abstract][Full Text] [Related]
2. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Feng S; Hao Z; Zhang X; Hao F Sci Total Environ; 2019 Nov; 689():1228-1234. PubMed ID: 31466161 [TBL] [Abstract][Full Text] [Related]
3. Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale. Feng S; Hao Z Sci Total Environ; 2020 Feb; 704():135250. PubMed ID: 31818572 [TBL] [Abstract][Full Text] [Related]
4. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO Jin Z; Zhuang Q; Wang J; Archontoulis SV; Zobel Z; Kotamarthi VR Glob Chang Biol; 2017 Jul; 23(7):2687-2704. PubMed ID: 28063186 [TBL] [Abstract][Full Text] [Related]
5. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Heino M; Kinnunen P; Anderson W; Ray DK; Puma MJ; Varis O; Siebert S; Kummu M Sci Rep; 2023 Mar; 13(1):3583. PubMed ID: 36869041 [TBL] [Abstract][Full Text] [Related]
6. The influence of humid heat on morbidity of megacity Shanghai in China. Liang C; Yuan J; Tang X; Kan H; Cai W; Chen J Environ Int; 2024 Jan; 183():108424. PubMed ID: 38219539 [TBL] [Abstract][Full Text] [Related]
7. Maladaptation of U.S. corn and soybeans to a changing climate. Yu C; Miao R; Khanna M Sci Rep; 2021 Jun; 11(1):12351. PubMed ID: 34117293 [TBL] [Abstract][Full Text] [Related]
8. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Hawkins E; Fricker TE; Challinor AJ; Ferro CA; Ho CK; Osborne TM Glob Chang Biol; 2013 Mar; 19(3):937-47. PubMed ID: 23504849 [TBL] [Abstract][Full Text] [Related]
9. How does climate change affect potential yields of four staple grain crops worldwide by 2030? Cai C; Lv L; Wei S; Zhang L; Cao W PLoS One; 2024; 19(5):e0303857. PubMed ID: 38820516 [TBL] [Abstract][Full Text] [Related]
10. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields. Lesk C; Coffel E; Winter J; Ray D; Zscheischler J; Seneviratne SI; Horton R Nat Food; 2021 Sep; 2(9):683-691. PubMed ID: 37117467 [TBL] [Abstract][Full Text] [Related]
11. Evidence for a weakening strength of temperature-corn yield relation in the United States during 1980-2010. Leng G Sci Total Environ; 2017 Dec; 605-606():551-558. PubMed ID: 28672243 [TBL] [Abstract][Full Text] [Related]
12. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US Corn Belt at the county level. Jiang H; Hu H; Zhong R; Xu J; Xu J; Huang J; Wang S; Ying Y; Lin T Glob Chang Biol; 2020 Mar; 26(3):1754-1766. PubMed ID: 31789455 [TBL] [Abstract][Full Text] [Related]
13. Impact of extreme weather conditions on European crop production in 2018. Beillouin D; Schauberger B; Bastos A; Ciais P; Makowski D Philos Trans R Soc Lond B Biol Sci; 2020 Oct; 375(1810):20190510. PubMed ID: 32892735 [TBL] [Abstract][Full Text] [Related]
14. Increased probability and severity of compound dry and hot growing seasons over world's major croplands. He Y; Hu X; Xu W; Fang J; Shi P Sci Total Environ; 2022 Jun; 824():153885. PubMed ID: 35182627 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of thermal indices for modeling cold and heat stress in US dairy systems. Choi E; Carneiro de Souza V; Dillon JA; Kebreab E; Mueller ND J Dairy Sci; 2024 Aug; 107(8):5817-5832. PubMed ID: 38608948 [TBL] [Abstract][Full Text] [Related]
16. Estimating non-additive within-season temperature effects on maize yields using Bayesian approaches. Yu J; Goh G Sci Rep; 2019 Dec; 9(1):18566. PubMed ID: 31811250 [TBL] [Abstract][Full Text] [Related]
17. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat. Zhang T; Lin X; Sassenrath GF Sci Total Environ; 2015 Mar; 508():331-42. PubMed ID: 25497355 [TBL] [Abstract][Full Text] [Related]
18. Climate change and extreme weather: A review focusing on the continental United States. Robinson WA J Air Waste Manag Assoc; 2021 Oct; 71(10):1186-1209. PubMed ID: 34128774 [TBL] [Abstract][Full Text] [Related]
19. Dairy cattle in a temperate climate: the effects of weather on milk yield and composition depend on management. Hill DL; Wall E Animal; 2015 Jan; 9(1):138-49. PubMed ID: 25315451 [TBL] [Abstract][Full Text] [Related]
20. Simulation of Wheat Response to Future Climate Change Based on Coupled Model Inter-Comparison Project Phase 6 Multi-Model Ensemble Projections in the North China Plain. Bai H; Xiao D; Wang B; Liu L; Tang J Front Plant Sci; 2022; 13():829580. PubMed ID: 35185993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]