BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36639864)

  • 1. A method for reproducible high-resolution imaging of 3D cancer cell spheroids.
    Phillips TA; Caprettini V; Aggarwal N; Marcotti S; Tetley R; Mao Y; Shaw T; Chiappini C; Parsons M; Cox S
    J Microsc; 2023 Jul; 291(1):30-42. PubMed ID: 36639864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DISC-3D: dual-hydrogel system enhances optical imaging and enables correlative mass spectrometry imaging of invading multicellular tumor spheroids.
    Avard RC; Broad ML; Zandkarimi F; Devanny AJ; Hammer JL; Yu K; Guzman A; Kaufman LJ
    Sci Rep; 2023 Jul; 13(1):12383. PubMed ID: 37524722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of 3D Tumor Spheroids with Encapsulating Basement Membranes for Invasion Studies.
    Nazari SS
    Curr Protoc Cell Biol; 2020 Jun; 87(1):e105. PubMed ID: 32436628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-Resolved Fluorescence Imaging and Analysis of Cancer Cell Invasion in the 3D Spheroid Model.
    Perrin L; Tucker T; Gligorijevic B
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33586705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic-Based Generation of 3D Collagen Spheres to Investigate Multicellular Spheroid Invasion.
    Bertillot F; Attieh Y; Delarue M; Gurchenkov BG; Descroix S; Vignjevic DM; Ferraro D
    Methods Mol Biol; 2017; 1612():269-279. PubMed ID: 28634950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Invasive Activity of CAF Spheroids into Three Dimensional (3D) Collagen Matrices.
    Villaronga MÁ; Teijeiro SÁ; Hermida-Prado F; Garzón-Arango M; Sanz-Moreno V; García-Pedrero JM
    Methods Mol Biol; 2018; 1731():145-154. PubMed ID: 29318551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response.
    Monteiro MV; Gaspar VM; Ferreira LP; Mano JF
    Biomater Sci; 2020 Mar; 8(7):1855-1864. PubMed ID: 32091033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Three-Dimensional Structure of Adherent Gingival Fibroblasts and Spheroids via a Fibrous Protein-Based Hydrogel Cover.
    Kaufman G; Nunes L; Eftimiades A; Tutak W
    Cells Tissues Organs; 2016; 202(5-6):343-354. PubMed ID: 27578009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient fabrication of monodisperse hepatocyte spheroids and encapsulation in hybrid hydrogel with controllable extracellular matrix effect.
    Deng S; Zhu Y; Zhao X; Chen J; Tuan RS; Chan HF
    Biofabrication; 2021 Oct; 14(1):. PubMed ID: 34587587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Live-Cell Confocal Imaging of 3D Spheroids in a High-Throughput Format.
    Leary E; Rhee C; Wilks BT; Morgan JR
    SLAS Technol; 2018 Jun; 23(3):231-242. PubMed ID: 29412762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion.
    Liu C; Lewin Mejia D; Chiang B; Luker KE; Luker GD
    Acta Biomater; 2018 Jul; 75():213-225. PubMed ID: 29879553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a scoring function for comparing simulated and experimental tumor spheroids.
    Herold J; Behle E; Rosenbauer J; Ferruzzi J; Schug A
    PLoS Comput Biol; 2023 Mar; 19(3):e1010471. PubMed ID: 36996248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a 3D collective cancer invasion model with control over collagen fiber alignment.
    Su CY; Burchett A; Dunworth M; Choi JS; Ewald AJ; Ahn EH; Kim DH
    Biomaterials; 2021 Aug; 275():120922. PubMed ID: 34126408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A liquid culture cancer spheroid model reveals low PI3K/Akt pathway activity and low adhesiveness to the extracellular matrix.
    Abe-Fukasawa N; Watanabe R; Gen Y; Nishino T; Itasaki N
    FEBS J; 2021 Oct; 288(19):5650-5667. PubMed ID: 33837641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies.
    Kingsley DM; Roberge CL; Rudkouskaya A; Faulkner DE; Barroso M; Intes X; Corr DT
    Acta Biomater; 2019 Sep; 95():357-370. PubMed ID: 30776506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Printed Stamps for the Fabrication of Patterned Microwells and High-Throughput Production of Homogeneous Cell Spheroids.
    Gonzalez-Fernandez T; Tenorio AJ; Leach JK
    3D Print Addit Manuf; 2020 Jun; 7(3):139-147. PubMed ID: 32855996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids.
    Hill L; Bruns J; Zustiak SP
    Acta Biomater; 2021 Sep; 132():437-447. PubMed ID: 34010694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells.
    Dornhof J; Zieger V; Kieninger J; Frejek D; Zengerle R; Urban GA; Kartmann S; Weltin A
    Lab Chip; 2022 Nov; 22(22):4369-4381. PubMed ID: 36254669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.