These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36639891)

  • 1. Undermatching Is a Consequence of Policy Compression.
    Bari BA; Gershman SJ
    J Neurosci; 2023 Jan; 43(3):447-457. PubMed ID: 36639891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Undermatching and overmatching as deviations from the matching law.
    Wearden JH
    J Exp Anal Behav; 1983 Nov; 40(3):333-40. PubMed ID: 16812351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Selective Role for Dopamine in Learning to Maximize Reward But Not to Minimize Effort: Evidence from Patients with Parkinson's Disease.
    Skvortsova V; Degos B; Welter ML; Vidailhet M; Pessiglione M
    J Neurosci; 2017 Jun; 37(25):6087-6097. PubMed ID: 28539420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human decision making balances reward maximization and policy compression.
    Lai L; Gershman SJ
    PLoS Comput Biol; 2024 Apr; 20(4):e1012057. PubMed ID: 38669280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine restores cognitive motivation in Parkinson's disease.
    McGuigan S; Zhou SH; Brosnan MB; Thyagarajan D; Bellgrove MA; Chong TT
    Brain; 2019 Mar; 142(3):719-732. PubMed ID: 30689734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine-Dependent Loss Aversion during Effort-Based Decision-Making.
    Chen X; Voets S; Jenkinson N; Galea JM
    J Neurosci; 2020 Jan; 40(3):661-670. PubMed ID: 31727795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine Manipulation Affects Response Vigor Independently of Opportunity Cost.
    Zénon A; Devesse S; Olivier E
    J Neurosci; 2016 Sep; 36(37):9516-25. PubMed ID: 27629704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease.
    Le Heron C; Plant O; Manohar S; Ang YS; Jackson M; Lennox G; Hu MT; Husain M
    Brain; 2018 May; 141(5):1455-1469. PubMed ID: 29672668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian deterministic decision making: a normative account of the operant matching law and heavy-tailed reward history dependency of choices.
    Saito H; Katahira K; Okanoya K; Okada M
    Front Comput Neurosci; 2014; 8():18. PubMed ID: 24624077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopaminergic medication increases motivation to exert cognitive control by reducing subjective effort costs in Parkinson's patients.
    Bogdanov M; LoParco S; Otto AR; Sharp M
    Neurobiol Learn Mem; 2022 Sep; 193():107652. PubMed ID: 35724812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine is associated with prioritization of reward-associated memories in Parkinson's disease.
    Sharp ME; Duncan K; Foerde K; Shohamy D
    Brain; 2020 Aug; 143(8):2519-2531. PubMed ID: 32844197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Attraction Effect Modulates Reward Prediction Errors and Intertemporal Choices.
    Gluth S; Hotaling JM; Rieskamp J
    J Neurosci; 2017 Jan; 37(2):371-382. PubMed ID: 28077716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of dopamine replacement therapy in decision-making, working memory, and reward in Parkinson's disease: does the therapy-dose matter?
    Torta DM; Castelli L; Zibetti M; Lopiano L; Geminiani G
    Brain Cogn; 2009 Nov; 71(2):84-91. PubMed ID: 19442427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine enhances willingness to exert effort for reward in Parkinson's disease.
    Chong TT; Bonnelle V; Manohar S; Veromann KR; Muhammed K; Tofaris GK; Hu M; Husain M
    Cortex; 2015 Aug; 69():40-6. PubMed ID: 25967086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine receptors regulate preference between high-effort and high-risk rewards.
    Gabriel DBK; Liley AE; Freels TG; Simon NW
    Psychopharmacology (Berl); 2021 Apr; 238(4):991-1004. PubMed ID: 33410986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive states influence dopamine-driven aberrant learning in Parkinson's disease.
    Cavanagh JF; Mueller AA; Brown DR; Janowich JR; Story-Remer JH; Wegele A; Richardson SP
    Cortex; 2017 May; 90():115-124. PubMed ID: 28384481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Dissection of Dopamine Motor and Motivational Functions in Humans.
    Le Bouc R; Rigoux L; Schmidt L; Degos B; Welter ML; Vidailhet M; Daunizeau J; Pessiglione M
    J Neurosci; 2016 Jun; 36(25):6623-33. PubMed ID: 27335396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making.
    Zénon A; Duclos Y; Carron R; Witjas T; Baunez C; Régis J; Azulay JP; Brown P; Eusebio A
    Brain; 2016 Jun; 139(Pt 6):1830-43. PubMed ID: 27190012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired value-based decision-making in Parkinson's disease apathy.
    Gilmour W; Mackenzie G; Feile M; Tayler-Grint L; Suveges S; Macfarlane JA; Macleod AD; Marshall V; Grunwald IQ; Steele JD; Gilbertson T
    Brain; 2024 Apr; 147(4):1362-1376. PubMed ID: 38305691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overriding phasic dopamine signals redirects action selection during risk/reward decision making.
    Stopper CM; Tse MTL; Montes DR; Wiedman CR; Floresco SB
    Neuron; 2014 Oct; 84(1):177-189. PubMed ID: 25220811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.