These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36640037)
1. Electron beam treatment for the removal of 1,4-dioxane in water and wastewater. Pearce R; Li X; Vennekate J; Ciovati G; Bott C Water Sci Technol; 2023 Jan; 87(1):275-283. PubMed ID: 36640037 [TBL] [Abstract][Full Text] [Related]
2. Enhanced decomposition of 1,4-dioxane in water by ozonation under alkaline condition. Tian GP; Wu QY; Li A; Wang WL; Hu HY Water Sci Technol; 2014; 70(12):1934-40. PubMed ID: 25521127 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Enhanced Ozone-Biologically Active Filtration Treatment for the Removal of 1,4-Dioxane and Disinfection Byproduct Precursors from Wastewater Effluent. Vatankhah H; Szczuka A; Mitch WA; Almaraz N; Brannum J; Bellona C Environ Sci Technol; 2019 Mar; 53(5):2720-2730. PubMed ID: 30698962 [TBL] [Abstract][Full Text] [Related]
4. Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse. Souza BM; Souza BS; Guimarães TM; Ribeiro TF; Cerqueira AC; Sant'Anna GL; Dezotti M Environ Sci Pollut Res Int; 2016 Nov; 23(22):22947-22956. PubMed ID: 27578092 [TBL] [Abstract][Full Text] [Related]
5. Impact of groundwater quality and associated byproduct formation during UV/hydrogen peroxide treatment of 1,4-dioxane. Lee CS; Venkatesan AK; Walker HW; Gobler CJ Water Res; 2020 Apr; 173():115534. PubMed ID: 32023496 [TBL] [Abstract][Full Text] [Related]
6. Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-contaminated water. Myers MA; Johnson NW; Marin EZ; Pornwongthong P; Liu Y; Gedalanga PB; Mahendra S Environ Pollut; 2018 Sep; 240():916-924. PubMed ID: 29879691 [TBL] [Abstract][Full Text] [Related]
7. Dioxanes and dioxolanes in source waters: Occurrence, odor thresholds and behavior through upgraded conventional and advanced processes in a drinking water treatment plant. Carrera G; Vegué L; Ventura F; Hernández-Valencia A; Devesa R; Boleda MR Water Res; 2019 Jun; 156():404-413. PubMed ID: 30933698 [TBL] [Abstract][Full Text] [Related]
8. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Altmann J; Rehfeld D; Träder K; Sperlich A; Jekel M Water Res; 2016 Apr; 92():131-9. PubMed ID: 26849316 [TBL] [Abstract][Full Text] [Related]
9. Removal of trace organic chemicals in wastewater effluent by UV/H Nihemaiti M; Miklos DB; Hübner U; Linden KG; Drewes JE; Croué JP Water Res; 2018 Nov; 145():487-497. PubMed ID: 30193192 [TBL] [Abstract][Full Text] [Related]
10. Pilot test of biological removal of 1,4-dioxane from a chemical factory wastewater by gel carrier entrapping Afipia sp. strain D1. Isaka K; Udagawa M; Sei K; Ike M J Hazard Mater; 2016 Mar; 304():251-8. PubMed ID: 26561749 [TBL] [Abstract][Full Text] [Related]
11. Field investigation of advanced oxidation of secondary effluent from municipal wastewater treatment plant. Xie RJ; Gomez MJ; Xing YJ J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Nov; 42(13):2047-57. PubMed ID: 17990168 [TBL] [Abstract][Full Text] [Related]
12. Activation of ozone by peroxymonosulfate for selective degradation of 1,4-dioxane: Limited water matrices effects. Yang J; Li Y; Yang Z; Shih K; Ying GG; Feng Y J Hazard Mater; 2022 Aug; 436():129223. PubMed ID: 35739743 [TBL] [Abstract][Full Text] [Related]
13. Degradation of estrone in water and wastewater by various advanced oxidation processes. Sarkar S; Ali S; Rehmann L; Nakhla G; Ray MB J Hazard Mater; 2014 Aug; 278():16-24. PubMed ID: 24937659 [TBL] [Abstract][Full Text] [Related]
14. Degradation of metoprolol from wastewater in a bio-electro-Fenton system. Yang X; Zou R; Tang K; Andersen HR; Angelidaki I; Zhang Y Sci Total Environ; 2021 Jun; 771():145385. PubMed ID: 33736124 [TBL] [Abstract][Full Text] [Related]
15. Optimal integration of vacuum UV with granular biofiltration for advanced wastewater treatment: Impact of process sequence on CECs removal and microbial ecology. Piras F; Nakhla G; Murgolo S; De Ceglie C; Mascolo G; Bell K; Jeanne T; Mele G; Santoro D Water Res; 2022 Jul; 220():118638. PubMed ID: 35640512 [TBL] [Abstract][Full Text] [Related]
16. Removal of iopromide and degradation characteristics in electron beam irradiation process. Kwon M; Yoon Y; Cho E; Jung Y; Lee BC; Paeng KJ; Kang JW J Hazard Mater; 2012 Aug; 227-228():126-34. PubMed ID: 22647234 [TBL] [Abstract][Full Text] [Related]
17. Unravelling the performance of UV/H Cibati A; Gonzalez-Olmos R; Rodriguez-Mozaz S; Buttiglieri G Chemosphere; 2022 Mar; 290():133315. PubMed ID: 34921855 [TBL] [Abstract][Full Text] [Related]
18. Extended field investigations of ozone-biofiltration advanced water treatment for potable reuse. Sundaram V; Pagilla K; Guarin T; Li L; Marfil-Vega R; Bukhari Z Water Res; 2020 Apr; 172():115513. PubMed ID: 32006773 [TBL] [Abstract][Full Text] [Related]
19. Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV. Kim TH; Kim SD; Kim HY; Lim SJ; Lee M; Yu S J Hazard Mater; 2012 Aug; 227-228():237-42. PubMed ID: 22682797 [TBL] [Abstract][Full Text] [Related]
20. In-situ activation of persulfate by iron filings and degradation of 1,4-dioxane. Zhong H; Brusseau ML; Wang Y; Yan N; Quig L; Johnson GR Water Res; 2015 Oct; 83():104-11. PubMed ID: 26141426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]