These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36640313)

  • 1. Disarm resistance: Fungal effectors target WAK alternative splicing variant for virulence.
    Liu Z; Jian Y; Shan L
    Cell Rep; 2023 Jan; 42(1):111939. PubMed ID: 36640313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance.
    Zuo N; Bai WZ; Wei WQ; Yuan TL; Zhang D; Wang YZ; Tang WH
    Cell Rep; 2022 Dec; 41(13):111877. PubMed ID: 36577386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery, Biosynthesis and Stress-Related Accumulation of Dolabradiene-Derived Defenses in Maize.
    Mafu S; Ding Y; Murphy KM; Yaacoobi O; Addison JB; Wang Q; Shen Z; Briggs SP; Bohlmann J; Castro-Falcon G; Hughes CC; Betsiashvili M; Huffaker A; Schmelz EA; Zerbe P
    Plant Physiol; 2018 Apr; 176(4):2677-2690. PubMed ID: 29475898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of maize resistance to Fusarium graminearum.
    Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q
    BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes.
    Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ
    BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and Fusarium graminearum resistance in maize seedling roots.
    Zhou S; Zhang YK; Kremling KA; Ding Y; Bennett JS; Bae JS; Kim DK; Ackerman HH; Kolomiets MV; Schmelz EA; Schroeder FC; Buckler ES; Jander G
    New Phytol; 2019 Mar; 221(4):2096-2111. PubMed ID: 30289553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infection structure-specific expression of β-1,3-glucan synthase is essential for pathogenicity of Colletotrichum graminicola and evasion of β-glucan-triggered immunity in maize.
    Oliveira-Garcia E; Deising HB
    Plant Cell; 2013 Jun; 25(6):2356-78. PubMed ID: 23898035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance.
    Campos-Bermudez VA; Fauguel CM; Tronconi MA; Casati P; Presello DA; Andreo CS
    PLoS One; 2013; 8(4):e61580. PubMed ID: 23637860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The coiled-coil protein-binding motif in Fusarium verticillioides Fsr1 is essential for maize stalk rot virulence.
    Yamamura Y; Shim WB
    Microbiology (Reading); 2008 Jun; 154(Pt 6):1637-1645. PubMed ID: 18524918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome profiling identifies maize line specificity of fungal effectors in the maize-Ustilago maydis interaction.
    Schurack S; Depotter JRL; Gupta D; Thines M; Doehlemann G
    Plant J; 2021 May; 106(3):733-752. PubMed ID: 33570802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis.
    Stirnberg A; Djamei A
    Mol Plant Pathol; 2016 Dec; 17(9):1467-1479. PubMed ID: 27279632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize.
    Lu S; Gillian Turgeon B; Edwards MC
    Fungal Genet Biol; 2015 Aug; 81():12-24. PubMed ID: 26051492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize.
    Wang C; Yang Q; Wang W; Li Y; Guo Y; Zhang D; Ma X; Song W; Zhao J; Xu M
    New Phytol; 2017 Sep; 215(4):1503-1515. PubMed ID: 28722229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast.
    Zhang Y; He J; Jia LJ; Yuan TL; Zhang D; Guo Y; Wang Y; Tang WH
    PLoS Pathog; 2016 Mar; 12(3):e1005485. PubMed ID: 26974960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Ustilago maydis/Zea mays pathosystem: transcriptional responses and novel functional aspects of a fungal calcineurin regulatory B subunit.
    Donaldson ME; Meng S; Gagarinova A; Babu M; Lambie SC; Swiadek AA; Saville BJ
    Fungal Genet Biol; 2013; 58-59():91-104. PubMed ID: 23973481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum.
    Van Nguyen T; Kröger C; Bönnighausen J; Schäfer W; Bormann J
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1378-94. PubMed ID: 23945004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative method for determining relative colonization rates of maize callus by Fusarium graminearum for resistance gene evaluations.
    Johnson ET; Dowd PF
    J Microbiol Methods; 2016 Nov; 130():73-75. PubMed ID: 27577788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects.
    Gaikpa DS; Miedaner T
    Theor Appl Genet; 2019 Oct; 132(10):2721-2739. PubMed ID: 31440772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum.
    Van Thuat N; Schäfer W; Bormann J
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fg12 ribonuclease secretion contributes to Fusarium graminearum virulence and induces plant cell death.
    Yang B; Wang Y; Tian M; Dai K; Zheng W; Liu Z; Yang S; Liu X; Shi D; Zhang H; Wang Y; Ye W; Wang Y
    J Integr Plant Biol; 2021 Feb; 63(2):365-377. PubMed ID: 32725938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.