BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36640370)

  • 1. Optogenetic and chemogenetic manipulation of seizure threshold in mice.
    Kravchenko JA; Goldberg EM; Mattis J
    STAR Protoc; 2023 Mar; 4(1):102019. PubMed ID: 36640370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for detecting plastic changes in defined neuronal populations in neuropathic mice.
    Zhang Z; Zamponi GW
    STAR Protoc; 2021 Sep; 2(3):100698. PubMed ID: 34382022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetics for controlling seizure circuits for translational approaches.
    Ledri M; Andersson M; Wickham J; Kokaia M
    Neurobiol Dis; 2023 Aug; 184():106234. PubMed ID: 37479090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model.
    Sukhotinsky I; Chan AM; Ahmed OJ; Rao VR; Gradinaru V; Ramakrishnan C; Deisseroth K; Majewska AK; Cash SS
    PLoS One; 2013; 8(4):e62013. PubMed ID: 23637949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescent optogenetic (BL-OG) activation of neurons during mouse postnatal brain development.
    Crespo EL; Prakash M; Bjorefeldt A; Medendorp WE; Shaner NC; Lipscombe D; Moore CI; Hochgeschwender U
    STAR Protoc; 2021 Sep; 2(3):100667. PubMed ID: 34286295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of optogenetic and chemogenetic methods to seizure circuits: Where to go next?
    Forcelli PA
    J Neurosci Res; 2017 Dec; 95(12):2345-2356. PubMed ID: 28791729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Step-by-Step Protocol for Optogenetic Kindling.
    Cela E; Sjöström PJ
    Front Neural Circuits; 2020; 14():3. PubMed ID: 32116570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training protocol for probabilistic Pavlovian conditioning in mice using an open-source head-fixed setup.
    Hegedüs P; Velencei A; Belval CH; Heckenast J; Hangya B
    STAR Protoc; 2021 Sep; 2(3):100795. PubMed ID: 34522902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic Approaches for Controlling Seizure Activity.
    Tung JK; Berglund K; Gross RE
    Brain Stimul; 2016; 9(6):801-810. PubMed ID: 27496002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression.
    Muir J; Lopez J; Bagot RC
    Neuropsychopharmacology; 2019 May; 44(6):1013-1026. PubMed ID: 30555161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seizure suppression by high frequency optogenetic stimulation using in vitro and in vivo animal models of epilepsy.
    Chiang CC; Ladas TP; Gonzalez-Reyes LE; Durand DM
    Brain Stimul; 2014; 7(6):890-9. PubMed ID: 25108607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for near-infrared optogenetics manipulation of neurons and motor behavior in C. elegans using emissive upconversion nanoparticles.
    Wang R; Guo J; Yao H; Luo X; Deng Y; Tian Y; Zhang Y; Gao S
    STAR Protoc; 2024 Mar; 5(1):102858. PubMed ID: 38294907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol to study projection-specific circuits in the basal ganglia of adult mice using viral vector tracing, optogenetics, and patch-clamp technique.
    Ji YW; Xu XY; Yin C; Zhou C; Xiao C
    STAR Protoc; 2023 Sep; 4(3):102551. PubMed ID: 37660296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation, but not inhibition, of the fastigial nucleus provides powerful control over temporal lobe seizures.
    Streng ML; Krook-Magnuson E
    J Physiol; 2020 Jan; 598(1):171-187. PubMed ID: 31682010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for mouse optogenetic fMRI at ultrahigh magnetic fields.
    Shim HJ; Im GH; Jung WB; Moon HS; Dinh TNA; Lee JY; Kim SG
    STAR Protoc; 2022 Dec; 3(4):101846. PubMed ID: 36595930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Chemogenetics and Optogenetics to Dissect Brain-Immune Interactions.
    Korin B; Rolls A
    Methods Mol Biol; 2018; 1781():195-208. PubMed ID: 29705849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic, Cell-Type-Specific Roles for GABAergic Interneurons in a Mouse Model of Optogenetically Inducible Seizures.
    Khoshkhoo S; Vogt D; Sohal VS
    Neuron; 2017 Jan; 93(2):291-298. PubMed ID: 28041880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous electrophysiology and optogenetic perturbation of the same neurons in chronically implanted animals using μLED silicon probes.
    Kinsky NR; Vöröslakos M; Lopez Ruiz JR; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K
    STAR Protoc; 2023 Dec; 4(4):102570. PubMed ID: 37729059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.