BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36640445)

  • 1. Chip for dielectrophoretic microbial capture, separation and detection II: experimental study.
    Weber MU; Petkowski JJ; Weber RE; Krajnik B; Stemplewski S; Panek M; Dziubak T; Mrozinska P; Piela A; Paluch E
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36640445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chip for dielectrophoretic microbial capture, separation and detection I: theoretical basis of electrode design.
    Weber MU; Petkowski JJ; Weber RE; Krajnik B; Stemplewski S; Panek M; Dziubak T; Mrozinska P; Piela A; Lo SL; Montanaro Ochoa HF; Yerino CD
    Nanotechnology; 2023 Jan; 34(13):. PubMed ID: 36571849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of optimal electrode geometries for dielectrophoresis using fitness based on simplified particle trajectories.
    Kinio S; Mills JK
    Biomed Microdevices; 2016 Aug; 18(4):69. PubMed ID: 27432322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screen-printed microfluidic dielectrophoresis chip for cell separation.
    Zhu H; Lin X; Su Y; Dong H; Wu J
    Biosens Bioelectron; 2015 Jan; 63():371-378. PubMed ID: 25127471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of dielectrophoretic particle motion: Point particle versus finite-sized particle.
    Çetin B; Öner SD; Baranoğlu B
    Electrophoresis; 2017 Jun; 38(11):1407-1418. PubMed ID: 28164365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embedded passivated-electrode insulator-based dielectrophoresis (EπDEP).
    Shake T; Zellner P; Sahari A; Breazeal MV; Behkam B; Pruden A; Agah M
    Anal Bioanal Chem; 2013 Dec; 405(30):9825-33. PubMed ID: 24162823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of particles by pulsed dielectrophoresis.
    Cui HH; Voldman J; He XF; Lim KM
    Lab Chip; 2009 Aug; 9(16):2306-12. PubMed ID: 19636460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the design and optimization of micro-fluidic dielectrophoretic devices: a dynamic simulation study.
    Li H; Bashir R
    Biomed Microdevices; 2004 Dec; 6(4):289-95. PubMed ID: 15548876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
    Jia Y; Ren Y; Jiang H
    Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoretic separation of micron and submicron particles: a review.
    Dash S; Mohanty S
    Electrophoresis; 2014 Sep; 35(18):2656-72. PubMed ID: 24930837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation.
    Luo T; Fan L; Zeng Y; Liu Y; Chen S; Tan Q; Lam RHW; Sun D
    Lab Chip; 2018 May; 18(11):1521-1532. PubMed ID: 29725680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dielectrophoresis-based platform of cancerous cell capture using aptamer-functionalized gold nanoparticles in a microfluidic channel.
    Vu-Dinh H; Quang LD; Lin YR; Jen CP
    Electrophoresis; 2023 Jun; 44(11-12):1002-1015. PubMed ID: 36896498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and experimental analysis of negative dielectrophoresis-induced particle trajectories.
    Luna R; Heineck DP; Bucher E; Heiser L; Ibsen SD
    Electrophoresis; 2022 Jun; 43(12):1366-1377. PubMed ID: 35377504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free isolation and enrichment of cells through contactless dielectrophoresis.
    Elvington ES; Salmanzadeh A; Stremler MA; Davalos RV
    J Vis Exp; 2013 Sep; (79):. PubMed ID: 24056267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization.
    Zahedi Siani O; Zabetian Targhi M; Sojoodi M; Movahedin M
    Bioprocess Biosyst Eng; 2020 Sep; 43(9):1573-1586. PubMed ID: 32328730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric and material determinants of patterning efficiency by dielectrophoresis.
    Albrecht DR; Sah RL; Bhatia SN
    Biophys J; 2004 Oct; 87(4):2131-47. PubMed ID: 15454417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.