BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36640460)

  • 1. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions.
    Zhao X; Wright A; Goertz DE
    Ultrason Sonochem; 2023 Feb; 93():106291. PubMed ID: 36640460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superharmonic microbubble Doppler effect in ultrasound therapy.
    Pouliopoulos AN; Choi JJ
    Phys Med Biol; 2016 Aug; 61(16):6154-71. PubMed ID: 27469394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo high-speed microscopy of microbubbles in the chorioallantoic membrane model.
    Anbarafshan R; Pellow C; Kiezun K; Leong H; Goertz DE
    Theranostics; 2024; 14(5):1794-1814. PubMed ID: 38505609
    [No Abstract]   [Full Text] [Related]  

  • 4. Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy.
    Pouliopoulos AN; Bonaccorsi S; Choi JJ
    Phys Med Biol; 2014 Nov; 59(22):6941-57. PubMed ID: 25350470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-linear Acoustic Emissions from Therapeutically Driven Contrast Agent Microbubbles.
    Song JH; Moldovan A; Prentice P
    Ultrasound Med Biol; 2019 Aug; 45(8):2188-2204. PubMed ID: 31085030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.
    Chen X; Wang J; Pacella JJ; Villanueva FS
    Ultrasound Med Biol; 2016 Feb; 42(2):528-538. PubMed ID: 26603628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening.
    Wang S; Samiotaki G; Olumolade O; Feshitan JA; Konofagou EE
    Ultrasound Med Biol; 2014 Jan; 40(1):130-7. PubMed ID: 24239362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intravital imaging and cavitation monitoring of antivascular ultrasound in tumor microvasculature.
    Zhao X; Pellow C; Goertz DE
    Theranostics; 2023; 13(1):250-266. PubMed ID: 36593952
    [No Abstract]   [Full Text] [Related]  

  • 9. Optical monitoring of ultrasound-induced bioeffects in glass catfish.
    Maruvada S; Hynynen K
    Ultrasound Med Biol; 2004 Jan; 30(1):67-74. PubMed ID: 14962610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavitation threshold of microbubbles in gel tunnels by focused ultrasound.
    Sassaroli E; Hynynen K
    Ultrasound Med Biol; 2007 Oct; 33(10):1651-60. PubMed ID: 17590501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents.
    Radhakrishnan K; Bader KB; Haworth KJ; Kopechek JA; Raymond JL; Huang SL; McPherson DD; Holland CK
    Phys Med Biol; 2013 Sep; 58(18):6541-63. PubMed ID: 24002637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.
    Tung YS; Choi JJ; Baseri B; Konofagou EE
    Ultrasound Med Biol; 2010 May; 36(5):840-52. PubMed ID: 20420973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.
    Arvanitis CD; McDannold N
    Med Phys; 2013 Nov; 40(11):112901. PubMed ID: 24320468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Acoustic Cavitation for Efficient Sonoporation with Phase-Shift Nanoemulsions.
    Burgess MT; Porter TM
    Ultrasound Med Biol; 2019 Mar; 45(3):846-858. PubMed ID: 30638968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of acoustic cavitation in microbubble-presented focused ultrasound exposure using gradient-echo MRI.
    Wu CH; Liu HL; Ho CT; Hsu PH; Fan CH; Yeh CK; Kang ST; Chen WS; Wang FN; Peng HH
    J Magn Reson Imaging; 2020 Jan; 51(1):311-318. PubMed ID: 31125166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavitation Characterization of Size-Isolated Microbubbles in a Vessel Phantom Using Focused Ultrasound.
    Martinez P; Bottenus N; Borden M
    Pharmaceutics; 2022 Sep; 14(9):. PubMed ID: 36145673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound.
    Lin Y; Lin L; Cheng M; Jin L; Du L; Han T; Xu L; Yu ACH; Qin P
    Ultrason Sonochem; 2017 Mar; 35(Pt A):176-184. PubMed ID: 27707644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force.
    Bezer JH; Koruk H; Rowlands CJ; Choi JJ
    Ultrasound Med Biol; 2020 Dec; 46(12):3327-3338. PubMed ID: 32919812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals.
    Ammi AY; Cleveland RO; Mamou J; Wang GI; Bridal SL; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):126-36. PubMed ID: 16471439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.
    Helfield B; Black JJ; Qin B; Pacella J; Chen X; Villanueva FS
    Ultrasound Med Biol; 2016 Mar; 42(3):782-94. PubMed ID: 26674676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.