These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36640648)

  • 41. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise.
    Walters DC; Kirwan ML
    Ecol Evol; 2016 May; 6(9):2948-56. PubMed ID: 27069590
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Consumer control of salt marshes driven by human disturbance.
    Bertness MD; Silliman BR
    Conserv Biol; 2008 Jun; 22(3):618-23. PubMed ID: 18577090
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Herbivory drives the spread of salt marsh die-off.
    Bertness MD; Brisson CP; Bevil MC; Crotty SM
    PLoS One; 2014; 9(3):e92916. PubMed ID: 24651837
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Soil microbial community development across a 32-year coastal wetland restoration time series and the relative importance of environmental factors.
    Abbott KM; Quirk T; Fultz LM
    Sci Total Environ; 2022 May; 821():153359. PubMed ID: 35081409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Global hotspots of salt marsh change and carbon emissions.
    Campbell AD; Fatoyinbo L; Goldberg L; Lagomasino D
    Nature; 2022 Dec; 612(7941):701-706. PubMed ID: 36450979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved mapping of coastal salt marsh habitat change at Barnegat Bay (NJ, USA) using object-based image analysis of high-resolution aerial imagery.
    Krause JR; Oczkowski AJ; Watson EB
    Remote Sens Appl; 2023 Jan; 29():1-11. PubMed ID: 37235064
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High nutrient loads amplify carbon cycling across California and New York coastal wetlands but with ambiguous effects on marsh integrity and sustainability.
    Watson EB; Rahman FI; Woolfolk A; Meyer R; Maher N; Wigand C; Gray AB
    PLoS One; 2022; 17(9):e0273260. PubMed ID: 36084085
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantifying the effects of sea level rise driven marsh migration on wave attenuation.
    Cassalho F; de S de Lima A; Ferreira CM; Henke M; de A Coelho G; Miesse TW; Johnston J; Coleman DJ
    Environ Monit Assess; 2023 Nov; 195(12):1487. PubMed ID: 37973636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Denitrification enzyme activity of fringe salt marshes in New England (USA).
    Wigand C; McKinney RA; Chintala MM; Charpentier MA; Groffman PM
    J Environ Qual; 2004; 33(3):1144-51. PubMed ID: 15224954
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Salt marshes create more extensive channel networks than mangroves.
    Schwarz C; van Rees F; Xie D; Kleinhans MG; van Maanen B
    Nat Commun; 2022 Apr; 13(1):2017. PubMed ID: 35440560
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving Predictions of Salt Marsh Evolution Through Better Integration of Data and Models.
    Wiberg PL; Fagherazzi S; Kirwan ML
    Ann Rev Mar Sci; 2020 Jan; 12():389-413. PubMed ID: 31283424
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Centuries of human-driven change in salt marsh ecosystems.
    Gedan KB; Silliman BR; Bertness MD
    Ann Rev Mar Sci; 2009; 1():117-41. PubMed ID: 21141032
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.
    Yang WH; Silver WL
    Glob Chang Biol; 2016 Jun; 22(6):2228-37. PubMed ID: 26718748
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Seasonal dynamics and changing sea level as determinants of the community and trophic structure of oribatid mites in a salt marsh of the Wadden Sea.
    Winter M; Haynert K; Scheu S; Maraun M
    PLoS One; 2018; 13(11):e0207141. PubMed ID: 30408121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The resilience of coastal marshes to hurricanes: The potential impact of excess nutrients.
    Mo Y; Kearney MS; Turner RE
    Environ Int; 2020 May; 138():105409. PubMed ID: 32179312
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh.
    Charles H; Dukes JS
    Ecol Appl; 2009 Oct; 19(7):1758-73. PubMed ID: 19831068
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh.
    Krask JL; Buck TL; Dunn RP; Smith EM
    PLoS One; 2022; 17(11):e0278215. PubMed ID: 36441803
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Presence of the Herbaceous Marsh Species
    Stagg CL; Laurenzano C; Vervaeke WC; Krauss KW; McKee KL
    Plants (Basel); 2022 May; 11(9):. PubMed ID: 35567260
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using vulnerability assessment to characterize coastal protection benefits provided by estuarine habitats of a dynamic intracoastal waterway.
    Verutes GM; Yang PF; Eastman SF; Doughty CL; Adgie TE; Dietz K; Dix NG; North A; Guannel G; Chapman SK
    PeerJ; 2024; 12():e16738. PubMed ID: 38390391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.