These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36640658)
1. Nuclei-induced formation of amyloid fibrils in whey protein: Effects of enzyme hydrolysis on the ability of nuclei to induce fibril formation. Yang X; Guan C; Ma C; Xu H Food Chem; 2023 Jun; 410():135433. PubMed ID: 36640658 [TBL] [Abstract][Full Text] [Related]
2. Homogeneous nuclei-induced, secondary nuclei-induced, and spontaneous whey protein concentrate nanofibril formation through different pathways. Guan C; Bing S; Yang X; Guo R; Chen Y; Xu H; Yu G J Dairy Sci; 2022 Jul; 105(7):5600-5609. PubMed ID: 35570048 [TBL] [Abstract][Full Text] [Related]
3. Comparative experiments of fibril formation from whey protein concentrate with homogeneous and secondary nuclei. Tan JY; Xu HH; Xie MM; Wang X; Dong SR; Li TJ; Yue CH; Cui L Food Res Int; 2018 Sep; 111():556-564. PubMed ID: 30007718 [TBL] [Abstract][Full Text] [Related]
4. Formation of fibrils derived from whey protein isolate: structural characteristics and protease resistance. Hu Y; He C; Woo MW; Xiong H; Hu J; Zhao Q Food Funct; 2019 Dec; 10(12):8106-8115. PubMed ID: 31746886 [TBL] [Abstract][Full Text] [Related]
5. Effect of CaCl Yang X; Xie M; Guan C; Yingchen ; Guo R; Ma C; Xu H; Shao M J Dairy Sci; 2022 Jul; 105(7):5573-5586. PubMed ID: 35570036 [TBL] [Abstract][Full Text] [Related]
6. The effect of limited proteolysis by different proteases on the formation of whey protein fibrils. Gao YZ; Xu HH; Ju TT; Zhao XH J Dairy Sci; 2013; 96(12):7383-92. PubMed ID: 24119812 [TBL] [Abstract][Full Text] [Related]
7. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Gosal WS; Clark AH; Ross-Murphy SB Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058 [TBL] [Abstract][Full Text] [Related]
8. Impact of enzymatic hydrolysis followed by transglutaminase-induced cross-linking on decreasing antigenicity and reserving partial interfacial properties of whey protein isolate. Yu XX; Liu C; Lu MH; Liu YL; Yin JY; Zhang YH Food Funct; 2019 Mar; 10(3):1653-1660. PubMed ID: 30839010 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale Structural Organization of Insulin Fibril Polymorphs Revealed by Atomic Force Microscopy-Infrared Spectroscopy (AFM-IR). Rizevsky S; Kurouski D Chembiochem; 2020 Feb; 21(4):481-485. PubMed ID: 31299124 [TBL] [Abstract][Full Text] [Related]
10. Oxygen permeability and mechanical properties of films from hydrolyzed whey protein. Sothornvit R; Krochta JM J Agric Food Chem; 2000 Sep; 48(9):3913-6. PubMed ID: 10995290 [TBL] [Abstract][Full Text] [Related]
11. Effects of the structure and interaction force of phytosterol/whey protein isolate self-assembly complex on phytosterol digestion properties. Zhao T; Yang B; Ji S; Luo J; Liu Y; Zhong Y; Lu B Food Chem; 2023 Mar; 403():134311. PubMed ID: 36156395 [TBL] [Abstract][Full Text] [Related]
12. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties. Pan K; Zhong Q Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282 [TBL] [Abstract][Full Text] [Related]
13. The role of amyloid fibrils in the modification of whey protein isolate gels with the form of stranded and particulate microstructures. Khalesi H; Sun C; He J; Lu W; Fang Y Food Res Int; 2021 Feb; 140():109856. PubMed ID: 33648174 [TBL] [Abstract][Full Text] [Related]
14. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism. VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391 [TBL] [Abstract][Full Text] [Related]
15. The Interplay between Whey Protein Fibrils with Carbon Nanotubes or Carbon Nano-Onions. Kang N; Hua J; Gao L; Zhang B; Pang J Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33525699 [TBL] [Abstract][Full Text] [Related]
16. Limited hydrolysis as a strategy to improve the non-covalent interaction of epigallocatechin-3-gallate (EGCG) with whey protein isolate near the isoelectric point. Zhao J; Lin W; Gao J; Gong H; Mao X Food Res Int; 2022 Nov; 161():111847. PubMed ID: 36192899 [TBL] [Abstract][Full Text] [Related]
17. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Tycko R; Wickner RB Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335 [TBL] [Abstract][Full Text] [Related]
18. Stepwise organization of the β-structure identifies key regions essential for the propagation and cytotoxicity of insulin amyloid fibrils. Chatani E; Imamura H; Yamamoto N; Kato M J Biol Chem; 2014 Apr; 289(15):10399-10410. PubMed ID: 24569992 [TBL] [Abstract][Full Text] [Related]
19. Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils. Murvai Ü; Somkuti J; Smeller L; Penke B; Kellermayer MS Biochim Biophys Acta; 2015 May; 1854(5):327-32. PubMed ID: 25600136 [TBL] [Abstract][Full Text] [Related]
20. Application of whey protein isolate fibrils in encapsulation and protection of β-carotene. Zhang C; Fu Y; Li Z; Li T; Shi Y; Xie H; Li Y; Su H; Li Z Food Chem; 2021 Jun; 346():128963. PubMed ID: 33422917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]