These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36640876)
1. A soft sensor for simulating algal cell density based on dynamic response to environmental changes in a eutrophic shallow lake. Rao W; Qian X; Fan Y; Liu T Sci Total Environ; 2023 Apr; 868():161543. PubMed ID: 36640876 [TBL] [Abstract][Full Text] [Related]
2. Algal biomass mapping of eutrophic lakes using a machine learning approach with MODIS images. Lai L; Zhang Y; Cao Z; Liu Z; Yang Q Sci Total Environ; 2023 Jul; 880():163357. PubMed ID: 37028659 [TBL] [Abstract][Full Text] [Related]
3. Trophic state modeling for shallow freshwater reservoir: a new approach. Markad AT; Landge AT; Nayak BB; Inamdar AB; Mishra AK Environ Monit Assess; 2019 Aug; 191(9):586. PubMed ID: 31440835 [TBL] [Abstract][Full Text] [Related]
4. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636 [TBL] [Abstract][Full Text] [Related]
5. Simulating chlorophyll-a fluorescence changing rate and phycocyanin fluorescence by using a multi-sensor system in Lake Taihu, China. Yang J; Holbach A; Stewardson MJ; Wilhelms A; Qin Y; Zheng B; Zou H; Qin B; Zhu G; Moldaenke C; Norra S Chemosphere; 2021 Feb; 264(Pt 2):128482. PubMed ID: 33038735 [TBL] [Abstract][Full Text] [Related]
6. Identifying the drivers of chlorophyll-a dynamics in a landscape lake recharged by reclaimed water using interpretable machine learning. Wang C; Liu J; Qiu C; Su X; Ma N; Li J; Wang S; Qu S Sci Total Environ; 2024 Jan; 906():167483. PubMed ID: 37832666 [TBL] [Abstract][Full Text] [Related]
7. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers]. Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322 [TBL] [Abstract][Full Text] [Related]
8. Satellite mapping reveals phytoplankton biomass's spatio-temporal dynamics and responses to environmental factors in a eutrophic inland lake. Lai L; Zhang Y; Han T; Zhang M; Cao Z; Liu Z; Yang Q; Chen X J Environ Manage; 2024 Jun; 360():121134. PubMed ID: 38749137 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity of phytoplankton to climatic factors in a large shallow lake revealed by column-integrated algal biomass from long-term satellite observations. Zhang Y; Hu M; Shi K; Zhang M; Han T; Lai L; Zhan P Water Res; 2021 Dec; 207():117786. PubMed ID: 34731665 [TBL] [Abstract][Full Text] [Related]
10. [Spatial and Temporal Dynamics of Floating Algal Blooms in Lake Chaohu in 2016 and Their Environmental Drivers]. Hu MQ; Zhang YC; Ma RH; Zhang YX Huan Jing Ke Xue; 2018 Nov; 39(11):4925-4937. PubMed ID: 30628214 [TBL] [Abstract][Full Text] [Related]
11. Explainable artificial intelligence for the interpretation of ensemble learning performance in algal bloom estimation. Park J; Seong B; Park Y; Lee WH; Heo TY Water Environ Res; 2024 Oct; 96(10):e11140. PubMed ID: 39382139 [TBL] [Abstract][Full Text] [Related]
12. Prediction of chlorophyll a and risk assessment of water blooms in Poyang Lake based on a machine learning method. Huang H; Zhang J Environ Pollut; 2024 Apr; 347():123501. PubMed ID: 38346640 [TBL] [Abstract][Full Text] [Related]
13. The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization. Huang J; Zhang Y; Arhonditsis GB; Gao J; Chen Q; Peng J Water Res; 2020 Aug; 181():115902. PubMed ID: 32505885 [TBL] [Abstract][Full Text] [Related]
14. Hysteresis effects of meteorological variation-induced algal blooms: A case study based on satellite-observed data from Dianchi Lake, China (1988-2020). Wang Q; Sun L; Zhu Y; Wang S; Duan C; Yang C; Zhang Y; Liu D; Zhao L; Tang J Sci Total Environ; 2022 Mar; 812():152558. PubMed ID: 34952086 [TBL] [Abstract][Full Text] [Related]
15. Temporal dependence of chlorophyll a-nutrient relationships in Lake Taihu: Drivers and management implications. Zou W; Zhu G; Xu H; Zhu M; Zhang Y; Qin B J Environ Manage; 2022 Mar; 306():114476. PubMed ID: 35051816 [TBL] [Abstract][Full Text] [Related]
16. Identifying environmental impacts on planktonic algal proliferation and associated risks: a five-year observation study in Danjiangkou Reservoir, China. Nong X; Guan X; Chen L; Wei J; Li R Sci Rep; 2024 Sep; 14(1):21568. PubMed ID: 39294208 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of machine learning methods for prediction of chlorophyll-a in a river with different hydrology characteristics: A case study in Fuchun River, China. Yang J; Zheng Y; Zhang W; Zhou Y; Zhang Y J Environ Manage; 2024 Jul; 364():121386. PubMed ID: 38865920 [TBL] [Abstract][Full Text] [Related]
18. Application of feature selection and regression models for chlorophyll-a prediction in a shallow lake. Li X; Sha J; Wang ZL Environ Sci Pollut Res Int; 2018 Jul; 25(20):19488-19498. PubMed ID: 29730758 [TBL] [Abstract][Full Text] [Related]
19. Relationships between nutrient, chlorophyll a and Secchi depth in lakes of the Chinese Eastern Plains ecoregion: Implications for eutrophication management. Zou W; Zhu G; Cai Y; Vilmi A; Xu H; Zhu M; Gong Z; Zhang Y; Qin B J Environ Manage; 2020 Apr; 260():109923. PubMed ID: 32090794 [TBL] [Abstract][Full Text] [Related]
20. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). Qin B; Li W; Zhu G; Zhang Y; Wu T; Gao G J Hazard Mater; 2015 Apr; 287():356-63. PubMed ID: 25679801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]