These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36640883)

  • 1. Fluoride immobilization and release in cemented PG backfill and its influence on the environment.
    Li X; Zhou Y; Shi Y; Zhu Q
    Sci Total Environ; 2023 Apr; 869():161548. PubMed ID: 36640883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Release of Pollutants through the Bleeding of Cemented Phosphogypsum Backfill: Link to Protocols for Slurry Preparation.
    Min C; Shi Y; Zhou Y; Liu Z
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reuse of phosphogypsum pretreated with water washing as aggregate for cemented backfill.
    Zhou Y; Li X; Shi Y; Zhu Q; Du J
    Sci Rep; 2022 Sep; 12(1):16091. PubMed ID: 36167716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of phosphorus on the properties of phosphogypsum-based cemented backfill.
    Zhou S; Li X; Zhou Y; Min C; Shi Y
    J Hazard Mater; 2020 Nov; 399():122993. PubMed ID: 32521317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Iron Tailings for Phosphate Removal in Cemented Phosphogypsum (PG) Backfill.
    Shi Y; Wang X; Qing Z; Song Y; Min J; Zhou Y; Du J; Wang S
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of metals in backfill of a phosphate mine of guiyang, China using a three-step sequential extraction technique.
    Shi Y; Gan L; Li X; He S; Sun C; Gao L
    Chemosphere; 2018 Feb; 192():354-361. PubMed ID: 29121565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly-efficient fluoride retention in on-site solidification/stabilization of phosphogypsum: Cemented paste backfill synergizes with poly-aluminum chloride activation.
    Chen Q; Zhang Q; Wang Y; Zhang Q; Liu Y
    Chemosphere; 2022 Dec; 309(Pt 2):136652. PubMed ID: 36216108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill.
    Chen Q; Zhang Q; Fourie A; Xin C
    J Environ Manage; 2017 Oct; 201():19-27. PubMed ID: 28633078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling of arsenic-containing biohydrometallurgy waste to produce a binder for cemented paste backfill: Co-treatment with oil shale residue.
    Zhao Y; Gu X; Qiu J; Zhang S; Guo Z; Sun X
    J Environ Manage; 2022 Oct; 319():115621. PubMed ID: 35849925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of phosphorus and fluorine in phosphogypsum for cemented paste backfill: Experimental and numerical simulation studies.
    Liu Y; Chen Q; Dalconi MC; Molinari S; Valentini L; Wang Y; Sun S; Wang P; Artioli G
    Environ Res; 2022 Nov; 214(Pt 1):113775. PubMed ID: 35830912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Response Robust Parameter Optimization of Cemented Backfill Proportion with Ultra-Fine Tailings.
    Huang M; Cai S; Chen L; Tang S
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on Effects of Refining Slag on Properties and Hydration of Cemented Solid Waste-Based Backfill.
    Tang C; Mu X; Ni W; Xu D; Li K
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of uranium tailings for cemented backfill and its environmental effects.
    Zhang X; Xue X; Ding D; Gu Y; Sun P
    Sci Total Environ; 2023 Mar; 863():160863. PubMed ID: 36513239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and performance of composite activated slag-based binder for cemented paste backfill.
    Yang F; Wu F; Yang B; Li L; Gao Q
    Chemosphere; 2022 Dec; 309(Pt 1):136649. PubMed ID: 36181840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic characteristics of magnesium-coal slag solid waste backfill material: Part I. preliminary study on flow, mechanics, hydration and leaching characteristics.
    Yang P; Liu L; Suo Y; Qu H; Xie G; Zhang C; Deng S; Lv Y
    J Environ Manage; 2023 Mar; 329():117016. PubMed ID: 36586328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium slag and fly ash-based binder for cemented fine tailings backfill.
    He Y; Chen Q; Qi C; Zhang Q; Xiao C
    J Environ Manage; 2019 Oct; 248():109282. PubMed ID: 31374435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment.
    Chen Q; Sun S; Wang Y; Zhang Q; Zhu L; Liu Y
    Chemosphere; 2023 Feb; 313():137412. PubMed ID: 36455381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Remediation of Phosphogypsum with Water-Washing Pre-Treatment Using Cemented Paste Backfill: Rheology Behavior and Damage Evolution.
    Liu Y; Chen Q; Wang Y; Zhang Q; Li H; Jiang C; Qi C
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle size distribution of aggregates effects on mesoscopic structural evolution of cemented waste rock backfill.
    Wu J; Yin Q; Gao Y; Meng B; Jing H
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16589-16601. PubMed ID: 33386549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Objective Function Optimization of Cemented Neutralization Slag Backfill Strength Based on RSM-BBD.
    Huang M; Chen L; Zhang M; Zhan S
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.