These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36640893)

  • 1. Cadmium mobility and health risk assessment in the soil-rice-human system using in vitro biaccessibility and in vivo bioavailability assay: Two year field experiment.
    Lin Q; Hamid Y; Yang H; Jiang J; Shan A; Wang M; Hussain B; Feng Y; Li T; He Z; Yang X
    Sci Total Environ; 2023 Apr; 867():161564. PubMed ID: 36640893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of low-Cd accumulating early rice cultivars coupled with phytoremediation and agro-production: Bioavailability and bioaccessibility tests.
    Lin Q; Hamid Y; Yin X; Hussain B; He Z; Yang X
    Sci Total Environ; 2022 Oct; 844():157143. PubMed ID: 35798119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice cultivars significantly mitigate cadmium accumulation in grains and its bioaccessibility and toxicity in human HL-7702 cells.
    Tefera W; Tang L; Lu L; Xie R; Seifu W; Tian S
    Environ Pollut; 2021 Mar; 272():116020. PubMed ID: 33234381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the bioaccessibility and bioavailability of Cd in contaminated rice in vitro and in vivo.
    Yao L; Wang Y; Deng Z; Wu Q; Fang M; Wu Y; Gong Z
    J Food Sci; 2021 Aug; 86(8):3730-3742. PubMed ID: 34309019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-foliar application of zinc and nano-silicon to rice helps in reducing cadmium exposure risk: Investigations through in-vitro digestion with human cell line bioavailability assay.
    Lin Q; Hamid Y; Wang H; Lu M; Cao X; Zou T; Chen Z; Hussain B; Feng Y; Li T; He Z; Yang X
    J Hazard Mater; 2024 Apr; 468():133822. PubMed ID: 38387179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702).
    Aziz R; Rafiq MT; Li T; Liu D; He Z; Stoffella PJ; Sun K; Xiaoe Y
    J Agric Food Chem; 2015 Apr; 63(13):3599-608. PubMed ID: 25738308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigating cadmium exposure risk in rice with foliar nano-selenium: Investigations through Caco-2 human cell line in-vivo bioavailability assay.
    Hussain B; Yin X; Lin Q; Hamid Y; Usman M; Hashmi ML; Lu M; Imran Taqi M; He Z; Yang XE
    Environ Pollut; 2024 Sep; 356():124356. PubMed ID: 38866319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the bioaccessibility and accumulation of cadmium in the soil-rice-human system based on optimized DGT and BCR coupled models.
    Chen R; Hu M; Cheng N; Shi R; Ma T; Wang W; Huang W
    Ecotoxicol Environ Saf; 2024 Jul; 280():116509. PubMed ID: 38833979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil.
    Meng J; Zhong L; Wang L; Liu X; Tang C; Chen H; Xu J
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8827-8835. PubMed ID: 29330814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccessibility and bioavailability assessment of cadmium in rice: In vitro simulators with/without gut microbiota and validation through in vivo mouse and human data.
    Xu FF; Chen YS; Lin XQ; Zhong AH; Zhao M; Li YQ; Li ZY; Lai YF; Song J; Pan JL; Cai ZF; Liang XX; Liu ZP; Wu YN; Wu WL; Yang XF
    Sci Total Environ; 2024 Nov; 953():175980. PubMed ID: 39236823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution.
    Li K; Cao C; Ma Y; Su D; Li J
    Sci Total Environ; 2019 Nov; 692():1022-1028. PubMed ID: 31539934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium accumulation characteristics of low-cadmium rice (Oryza sativa L.) line and F
    Li K; Yu H; Li T; Chen G; Huang F
    Environ Sci Pollut Res Int; 2017 Jul; 24(21):17566-17576. PubMed ID: 28597385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cataloging of Cd Allocation in Late Rice Cultivars Grown in Polluted Gleysol: Implications for Selection of Cultivars with Minimal Risk to Human Health.
    Lin Q; Tong W; Hussain B; Hamid Y; Lu M; He Z; Yang X
    Int J Environ Res Public Health; 2020 May; 17(10):. PubMed ID: 32455771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioavailability and bioaccessibility of cadmium in contaminated rice by in vivo and in vitro bioassays.
    Zhuang P; Sun S; Zhou X; Mao P; McBride MB; Zhang C; Li Y; Xia H; Li Z
    Sci Total Environ; 2020 Jun; 719():137453. PubMed ID: 32114234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation.
    Wang A; Wang M; Liao Q; He X
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5410-9. PubMed ID: 26564197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maize cultivars relieve health risks of Cd-Polluted Soils: In vitro Cd bioaccessibility and bioavailability.
    Beri WT; Gesessew WS; Tian S
    Sci Total Environ; 2020 Feb; 703():134852. PubMed ID: 31757544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the Bioaccessibility and Bioavailability of Cadmium in a Cooked Rice Food Matrix by Using an 11-Day Rapid Caco-2/HT-29 Co-culture Cell Model Combined with an In Vitro Digestion Model.
    Lv Q; He Q; Wu Y; Chen X; Ning Y; Chen Y
    Biol Trace Elem Res; 2019 Aug; 190(2):336-348. PubMed ID: 30357757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative accumulative risk assessment of co-exposure to Cd, As, and Pb in contaminated rice based on their in vivo bioavailability and in vitro bioaccessibility.
    Xiao W; Yang Y; Tang N; Huang X; Zhang Q; Zhao S; Chen D; Guo B; Zhao Z; Jiang Y; Ye X
    Sci Total Environ; 2024 Feb; 912():168922. PubMed ID: 38030010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of cadmium (Cd) transfer from paddy soil to rice (Oryza sativa L.) using DGT in comparison with conventional chemical methods: derivation of models to predict Cd accumulation in rice grains.
    Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Fang X; Gao N; Hu J
    Environ Sci Pollut Res Int; 2020 May; 27(13):14953-14962. PubMed ID: 32062776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: effects of biochar type and dosage, rice variety, and pollution level.
    Zhang M; Shan S; Chen Y; Wang F; Yang D; Ren J; Lu H; Ping L; Chai Y
    Environ Geochem Health; 2019 Feb; 41(1):43-52. PubMed ID: 29948534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.