These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36641160)
1. Effect of chitosan-protocatechuic acid conjugate on stability and encapsulation capacity of polysaccharide-based high internal phase emulsion. Zhao Q; Fan L; Zhou Y; Li J Carbohydr Polym; 2023 Mar; 304():120487. PubMed ID: 36641160 [TBL] [Abstract][Full Text] [Related]
2. High internal phase emulsion gels stabilized by phosphorylated perilla protein isolate for protecting hydrophobic nutrients: Adjusting emulsion performance by incorporating chitosan-protocatechuic acid conjugate. Zhao Q; Fan L; Li J Int J Biol Macromol; 2023 Jun; 239():124101. PubMed ID: 36958452 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of chitosan-protocatechuic acid conjugates to inhibit lipid oxidation and improve the stability of β-carotene in Pickering emulsions: Effect of molecular weight of chitosan. Zhao Q; Fan L; Liu Y; Li J Int J Biol Macromol; 2022 Sep; 217():1012-1026. PubMed ID: 35926669 [TBL] [Abstract][Full Text] [Related]
4. Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery systems and the in vitro digestion fate. Zhou FZ; Zeng T; Yin SW; Tang CH; Yuan DB; Yang XQ Food Funct; 2018 Feb; 9(2):959-970. PubMed ID: 29322140 [TBL] [Abstract][Full Text] [Related]
5. Neutral fabrication of UV-blocking and antioxidation lignin-stabilized high internal phase emulsion encapsulates for high efficient antibacterium of natural curcumin. Chen K; Qian Y; Wu S; Qiu X; Yang D; Lei L Food Funct; 2019 Jun; 10(6):3543-3555. PubMed ID: 31150025 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effects of phosphorylation modification and protocatechuic acid copolymerization improve the physical and oxidation stability of high internal phase emulsion stabilized by perilla protein isolate. Zhao Q; Li J; Qin H; Li R; Cheong KL; Chen J; Liu X; Jia X; Song B; Wang Z; Zhong S Food Chem; 2024 Nov; 458():140270. PubMed ID: 38959793 [TBL] [Abstract][Full Text] [Related]
7. Modulating the properties of myofibrillar proteins-stabilized high internal phase emulsions using chitosan for enhanced 3D-printed foods. Zhang F; Wang P; Huang M; Xu X Carbohydr Polym; 2024 Jan; 324():121540. PubMed ID: 37985113 [TBL] [Abstract][Full Text] [Related]
8. High-internal-phase emulsions stabilized by alkali-extracted green tea polysaccharide conjugates for curcumin delivery. Chen X; Xiao Y; Wei Y; Cao W; Han Y; Gao Z; Huang Y Food Chem; 2024 Mar; 435():137678. PubMed ID: 37806198 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobically modified chitosan microgels stabilize high internal phase emulsions with high compliance. Huang C; Sun F; Ma X; Gao C; Yang N; Nishinari K Carbohydr Polym; 2022 Jul; 288():119277. PubMed ID: 35450663 [TBL] [Abstract][Full Text] [Related]
10. Synergistic enhancement of loading contents and chemical stability of lycopene distributing both inside and on the oil/water interface. Nian Y; Yuan L; Zhao D; Li C J Food Sci; 2020 Oct; 85(10):3244-3252. PubMed ID: 32869332 [TBL] [Abstract][Full Text] [Related]
11. Freeze-thaw-stable high internal phase emulsions stabilized by soy protein isolate and chitosan complexes at pH 3.0 as promising mayonnaise replacers. Huang ZX; Lin WF; Zhang Y; Tang CH Food Res Int; 2022 Jun; 156():111309. PubMed ID: 35651068 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of OSA Starch/Chitosan Polysaccharide-Based High Internal Phase Emulsion via Altering Interfacial Behaviors. Yan C; McClements DJ; Zhu Y; Zou L; Zhou W; Liu W J Agric Food Chem; 2019 Oct; 67(39):10937-10946. PubMed ID: 31508960 [TBL] [Abstract][Full Text] [Related]
13. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs. Zeng T; Wu ZL; Zhu JY; Yin SW; Tang CH; Wu LY; Yang XQ Food Chem; 2017 Sep; 231():122-130. PubMed ID: 28449988 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of high internal phase emulsions (HIPEs) using pea protein isolate-hyaluronic acid-tannic acid complexes: Application of curcumin-loaded HIPEs as edible inks for 3D food printing. Li Z; Zhang L; Shan Y; Zhao Y; Dai L; Wang Y; Sun Q; McClements DJ; Cheng Y; Xu X Food Chem; 2024 Dec; 460(Pt 1):140402. PubMed ID: 39059330 [TBL] [Abstract][Full Text] [Related]
15. Stabilization of oil-in-water high internal phase emulsions with octenyl succinic acid starch and beeswax oleogel. Yu J; Zhang Y; Zhang R; Gao Y; Mao L Int J Biol Macromol; 2024 Jan; 254(Pt 1):127815. PubMed ID: 37918613 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of antioxidant pickering emulsions stabilized by zein/chitosan complex particles (ZCPs). Wang LJ; Hu YQ; Yin SW; Yang XQ; Lai FR; Wang SQ J Agric Food Chem; 2015 Mar; 63(9):2514-24. PubMed ID: 25636210 [TBL] [Abstract][Full Text] [Related]
17. High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: enhanced survivability and controlled release. Su J; Cai Y; Tai K; Guo Q; Zhu S; Mao L; Gao Y; Yuan F; Van der Meeren P Food Funct; 2021 Jan; 12(1):70-82. PubMed ID: 33191429 [TBL] [Abstract][Full Text] [Related]
18. High internal phase emulsions stabilized by native and heat-treated lactoferrin-carboxymethyl chitosan complexes: Comparison of molecular and granular emulsifiers. Zhao S; Cui F; Ma C; Julian McClements D; Liu X; Liu F Food Chem; 2022 Feb; 370():130507. PubMed ID: 34619605 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and digestive characteristics of high internal phase Pickering emulsions stabilized by ovalbumin-pectin complexes for improving the stability and bioaccessibility of curcumin. Wang L; Zhang H; Li H; Zhang H; Chi Y; Xia N; Li Z; Jiang L; Zhang X; Rayan AM Food Chem; 2022 Sep; 389():133055. PubMed ID: 35489261 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Zein/Pectin Hybrid Particle-Stabilized Pickering High Internal Phase Emulsions with Robust and Ordered Interface Architecture. Zhou FZ; Huang XN; Wu ZL; Yin SW; Zhu JH; Tang CH; Yang XQ J Agric Food Chem; 2018 Oct; 66(42):11113-11123. PubMed ID: 30272970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]