These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 36641733)
1. Mineral quantitative characterization method based on basis material decomposition model by dual-energy computed tomography. Zhi W; Zou J; Zhao J; Xia X J Xray Sci Technol; 2023; 31(2):373-391. PubMed ID: 36641733 [TBL] [Abstract][Full Text] [Related]
2. Quantification of the volume fraction of fat, water and bone mineral in spongiosa for red marrow dosimetry in molecular radiotherapy by using a dual-energy (SPECT/)CT. Salas-Ramirez M; Lassmann M; Tran-Gia J Z Med Phys; 2022 Nov; 32(4):428-437. PubMed ID: 35292186 [TBL] [Abstract][Full Text] [Related]
3. Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients. Landry G; Seco J; Gaudreault M; Verhaegen F Phys Med Biol; 2013 Oct; 58(19):6851-66. PubMed ID: 24025623 [TBL] [Abstract][Full Text] [Related]
4. Technical note: Error analysis of material-decomposition-based effective atomic number quantification method. Chen L; Ji X; Wang Z; Chen Y Med Phys; 2024 Jan; 51(1):419-427. PubMed ID: 37459046 [TBL] [Abstract][Full Text] [Related]
5. Improved dose calculation accuracy for low energy brachytherapy by optimizing dual energy CT imaging protocols for noise reduction using sinogram affirmed iterative reconstruction. Landry G; Gaudreault M; van Elmpt W; Wildberger JE; Verhaegen F Z Med Phys; 2016 Mar; 26(1):75-87. PubMed ID: 26422576 [TBL] [Abstract][Full Text] [Related]
6. Material decomposition with a prototype photon-counting detector CT system: expanding a stoichiometric dual-energy CT method via energy bin optimization and K-edge imaging. Richtsmeier D; Rodesch PA; Iniewski K; Bazalova-Carter M Phys Med Biol; 2024 Feb; 69(5):. PubMed ID: 38306974 [No Abstract] [Full Text] [Related]
7. A simple formulation for deriving effective atomic numbers via electron density calibration from dual-energy CT data in the human body. Saito M; Sagara S Med Phys; 2017 Jun; 44(6):2293-2303. PubMed ID: 28236659 [TBL] [Abstract][Full Text] [Related]
8. A general framework of noise suppression in material decomposition for dual-energy CT. Petrongolo M; Dong X; Zhu L Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212 [TBL] [Abstract][Full Text] [Related]
9. Quadratic relation for mass density calibration in human body using dual-energy CT data. Saito M Med Phys; 2021 Jun; 48(6):3065-3073. PubMed ID: 33905548 [TBL] [Abstract][Full Text] [Related]
10. Exact dual energy material decomposition from inconsistent rays (MDIR). Maass C; Meyer E; Kachelriess M Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706 [TBL] [Abstract][Full Text] [Related]
11. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography. Cai C; Rodet T; Legoupil S; Mohammad-Djafari A Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449 [TBL] [Abstract][Full Text] [Related]
12. Estimation of electron density, effective atomic number and stopping power ratio using dual-layer computed tomography for radiotherapy treatment planning. Ohira S; Washio H; Yagi M; Karino T; Nakamura K; Ueda Y; Miyazaki M; Koizumi M; Teshima T Phys Med; 2018 Dec; 56():34-40. PubMed ID: 30527087 [TBL] [Abstract][Full Text] [Related]
13. Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Almeida IP; Schyns LE; Öllers MC; van Elmpt W; Parodi K; Landry G; Verhaegen F Med Phys; 2017 Jan; 44(1):171-179. PubMed ID: 28070917 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous characterization of electron density and effective atomic number for radiotherapy planning using stoichiometric calibration method and dual energy algorithms. Tahmasebi Birgani MJ; Mahdavi M; Zabihzadeh M; Lotfi M; Mosleh-Shirazi MA Australas Phys Eng Sci Med; 2018 Sep; 41(3):601-619. PubMed ID: 29934836 [TBL] [Abstract][Full Text] [Related]
15. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks. Shi Z; Li H; Cao Q; Wang Z; Cheng M Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786 [TBL] [Abstract][Full Text] [Related]
16. Optimizing dual energy cone beam CT protocols for preclinical imaging and radiation research. Schyns LE; Almeida IP; van Hoof SJ; Descamps B; Vanhove C; Landry G; Granton PV; Verhaegen F Br J Radiol; 2017 Jan; 90(1069):20160480. PubMed ID: 27683003 [TBL] [Abstract][Full Text] [Related]
17. Towards subpercentage uncertainty proton stopping-power mapping via dual-energy CT: Direct experimental validation and uncertainty analysis of a statistical iterative image reconstruction method. Medrano M; Liu R; Zhao T; Webb T; Politte DG; Whiting BR; Liao R; Ge T; Porras-Chaverri MA; O'Sullivan JA; Williamson JF Med Phys; 2022 Mar; 49(3):1599-1618. PubMed ID: 35029302 [TBL] [Abstract][Full Text] [Related]
18. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging. Zhao W; Vernekohl D; Han F; Han B; Peng H; Yang Y; Xing L; Min JK Med Phys; 2018 Jul; 45(7):2964-2977. PubMed ID: 29679500 [TBL] [Abstract][Full Text] [Related]
19. Simplified derivation of stopping power ratio in the human body from dual-energy CT data. Saito M; Sagara S Med Phys; 2017 Aug; 44(8):4179-4187. PubMed ID: 28556239 [TBL] [Abstract][Full Text] [Related]
20. Statistical image-domain multimaterial decomposition for dual-energy CT. Xue Y; Ruan R; Hu X; Kuang Y; Wang J; Long Y; Niu T Med Phys; 2017 Mar; 44(3):886-901. PubMed ID: 28060999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]