These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 36641911)
1. Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Sun Y; Waterhouse GIN; Qiao X; Xiao J; Xu Z Food Chem; 2023 Jun; 410():135434. PubMed ID: 36641911 [TBL] [Abstract][Full Text] [Related]
2. A review on nanomaterial-based electrodes for the electrochemical detection of chloramphenicol and furazolidone antibiotics. K J A; Reddy S; Acharya S; B L; Deepak K; Naveen CS; Harish KN; Ramakrishna S Anal Methods; 2022 Sep; 14(34):3228-3249. PubMed ID: 35997206 [TBL] [Abstract][Full Text] [Related]
3. A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples. Moradi O Food Chem Toxicol; 2022 Oct; 168():113391. PubMed ID: 36041662 [TBL] [Abstract][Full Text] [Related]
4. Magnetic nanomaterials based electrochemical (bio)sensors for food analysis. Garkani Nejad F; Tajik S; Beitollahi H; Sheikhshoaie I Talanta; 2021 Jun; 228():122075. PubMed ID: 33773704 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical (Bio)Sensors for the Detection of Organophosphorus Pesticides Based on Nanomaterial-Modified Electrodes: A Review. Ding R; Li Z; Xiong Y; Wu W; Yang Q; Hou X Crit Rev Anal Chem; 2023; 53(8):1766-1791. PubMed ID: 35235478 [TBL] [Abstract][Full Text] [Related]
6. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Khoshbin Z; Verdian A; Housaindokht MR; Izadyar M; Rouhbakhsh Z Biosens Bioelectron; 2018 Dec; 122():263-283. PubMed ID: 30268964 [TBL] [Abstract][Full Text] [Related]
7. The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-Aminopropyl) triethoxysilane and silver nanoparticles. Roushani M; Rahmati Z; Farokhi S; Hoseini SJ; Fath RH Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110388. PubMed ID: 31923985 [TBL] [Abstract][Full Text] [Related]
8. Polyphenazine and polytriphenylmethane redox polymer/nanomaterial-based electrochemical sensors and biosensors: a review. Dalkiran B; Brett CMA Mikrochim Acta; 2021 Apr; 188(5):178. PubMed ID: 33913010 [TBL] [Abstract][Full Text] [Related]
9. Nanomaterials based optical and electrochemical sensing of histamine: Progress and perspectives. Yadav S; Nair SS; Sai VVR; Satija J Food Res Int; 2019 May; 119():99-109. PubMed ID: 30884738 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical and optical (bio)sensors for analysis of antibiotic residuals. Dezhakam E; Tavakkol M; Kafili T; Nozohouri E; Naseri A; Khalilzadeh B; Rahbarghazi R Food Chem; 2024 May; 439():138145. PubMed ID: 38091787 [TBL] [Abstract][Full Text] [Related]
11. Recent advances in nanomaterial-based biosensors for antibiotics detection. Lan L; Yao Y; Ping J; Ying Y Biosens Bioelectron; 2017 May; 91():504-514. PubMed ID: 28082239 [TBL] [Abstract][Full Text] [Related]
12. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Goud KY; Reddy KK; Satyanarayana M; Kummari S; Gobi KV Mikrochim Acta; 2019 Dec; 187(1):29. PubMed ID: 31813061 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical Aptasensor Based on Au Nanoparticles Decorated Porous Carbon Derived from Metal-Organic Frameworks for Ultrasensitive Detection of Chloramphenicol. Yang J; Zou J; Zhong W; Zou J; Gao Y; Liu S; Zhang S; Lu L Molecules; 2022 Oct; 27(20):. PubMed ID: 36296434 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in nanomaterials-based optical sensors for detection of various biomarkers (inorganic species, organic and biomolecules). Harshita ; Wu HF; Kailasa SK Luminescence; 2023 Jul; 38(7):954-998. PubMed ID: 35929140 [TBL] [Abstract][Full Text] [Related]
15. Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors. Mohamad Nor N; Ramli NH; Poobalan H; Qi Tan K; Abdul Razak K Crit Rev Anal Chem; 2023; 53(2):253-288. PubMed ID: 34565248 [TBL] [Abstract][Full Text] [Related]
16. Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials. Sun Y; Zhao J; Liang L Mikrochim Acta; 2021 Jan; 188(1):21. PubMed ID: 33404741 [TBL] [Abstract][Full Text] [Related]
17. Ultrasensitive label-free electrochemical immunosensor based on PVA-co-PE nanofibrous membrane for the detection of chloramphenicol residues in milk. El-Moghazy AY; Zhao C; Istamboulie G; Amaly N; Si Y; Noguer T; Sun G Biosens Bioelectron; 2018 Oct; 117():838-844. PubMed ID: 30096738 [TBL] [Abstract][Full Text] [Related]
18. Recent Trends in Nanomaterial Based Electrochemical Sensors for Drug Detection: Considering Green Assessment. Ozer T; Henry CS Curr Top Med Chem; 2024; 24(11):952-972. PubMed ID: 38415434 [TBL] [Abstract][Full Text] [Related]
19. Nanomaterials-based electrochemical sensors for the detection of natural antioxidants in food and biological samples: research progress. Wang H; Jiang S; Pan J; Lin J; Wang J; Li M; Xie A; Luo S Mikrochim Acta; 2022 Aug; 189(9):318. PubMed ID: 35931898 [TBL] [Abstract][Full Text] [Related]
20. Nanomaterial-based electrochemical sensors for detection of amino acids. Imanzadeh H; Sefid-Sefidehkhan Y; Afshary H; Afruz A; Amiri M J Pharm Biomed Anal; 2023 Jun; 230():115390. PubMed ID: 37079932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]