These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36642046)

  • 1. Recovery of zinc and extraction of calcium and sulfur from zinc-rich gypsum residue by selective reduction roasting combined with hydrolysis.
    Zhang T; Han J; Liu W; Jiao F; Jia W; Qin W
    J Environ Manage; 2023 Apr; 331():117256. PubMed ID: 36642046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative methodology for comprehensive utilization of arsenic-bearing neutralization sludge.
    Zhang T; Han J; Dong L; Liu D; Jiao F; Qin W; Liu W
    J Environ Manage; 2024 Feb; 353():120148. PubMed ID: 38306856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon.
    Li M; Peng B; Chai L; Peng N; Yan H; Hou D
    J Hazard Mater; 2012 Oct; 237-238():323-30. PubMed ID: 22975260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.
    de Beer M; Doucet FJ; Maree JP; Liebenberg L
    Waste Manag; 2015 Dec; 46():619-27. PubMed ID: 26316100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.
    de Beer M; Maree JP; Liebenberg L; Doucet FJ
    Waste Manag; 2014 Nov; 34(11):2373-81. PubMed ID: 25128917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineral Phase Reconstruction and Separation Behavior of Zinc and Iron from Zinc-Containing Dust.
    Xie Z; Li G; Guo Y; Wang S; Chen F; Yang L; Fu G; Jiang T
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Process of Direct Zinc Oxide Production by Carbothermal Reduction of Zinc Ash.
    Gao J; Wang H; Wang J; Zhang Y; Wang F; Yang S; Li S
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.
    Wu JY; Chang FC; Wang HP; Tsai MJ; Ko CH; Chen CC
    Environ Technol; 2015; 36(23):2952-8. PubMed ID: 25191877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The leaching behavior of copper and iron recovery from reduction roasting pyrite cinder.
    Zhang H; Chen G; Cai X; Fu J; Liu M; Zhang P; Yu H
    J Hazard Mater; 2021 Oct; 420():126561. PubMed ID: 34252668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A potential industrial waste-waste co-treatment process of utilizing waste SO
    Wan X; Taskinen P; Shi J; Jokilaakso A
    J Hazard Mater; 2021 Jul; 414():125541. PubMed ID: 33677318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaching and selective copper recovery from acidic leachates of TrĂªs Marias zinc plant (MG, Brazil) metallurgical purification residues.
    Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    J Environ Manage; 2016 Jul; 177():26-35. PubMed ID: 27074201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Recovery of Zinc from Metallurgical Waste Materials from Processing Zinc and Lead Ores.
    Hyk W; Kitka K; Rudnicki D
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31248081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An active dealkalization of red mud with roasting and water leaching.
    Zhu X; Li W; Guan X
    J Hazard Mater; 2015 Apr; 286():85-91. PubMed ID: 25559862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on Magnetization Roasting Kinetics of High-Iron and Low-Silicon Red Mud.
    Xie L; Hao J; Hu C; Zhang H
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method.
    Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z
    Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovering metals from flue dust produced in secondary copper smelting through a novel process combining low temperature roasting, water leaching and mechanochemical reduction.
    Chen J; Zhang W; Ma B; Che J; Xia L; Wen P; Wang C
    J Hazard Mater; 2022 May; 430():128497. PubMed ID: 35739678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sn separation from Sn-bearing iron concentrates by roasting with waste tire rubber in N
    Yu Y; Li L; Wang J; Wang J; Li K
    J Hazard Mater; 2019 Jun; 371():440-448. PubMed ID: 30875571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste.
    Coruh S; Ergun ON
    J Hazard Mater; 2010 Jan; 173(1-3):468-73. PubMed ID: 19762146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sufficient extraction of Cr from chromium ore processing residue (COPR) by selective Mg removal.
    Zhang J; Xie W; Chu S; Liu Z; Wu Z; Lan Y; Galvita VV; Zhang L; Su X
    J Hazard Mater; 2022 Oct; 440():129754. PubMed ID: 35985215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An all-in-one strategy for resource recovery and immobilization of arsenic from arsenic-bearing gypsum sludge.
    Yong Y; Yongkui L; Jianhang H; Dapeng Z; Hua W
    Chemosphere; 2022 Jun; 296():134078. PubMed ID: 35202660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.