BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36642339)

  • 1. Fracture toughness of fibrin gels as a function of protein volume fraction: Mechanical origins.
    Garyfallogiannis K; Ramanujam RK; Litvinov RI; Yu T; Nagaswami C; Bassani JL; Weisel JW; Purohit PK; Tutwiler V
    Acta Biomater; 2023 Mar; 159():49-62. PubMed ID: 36642339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rupture of blood clots: Mechanics and pathophysiology.
    Tutwiler V; Singh J; Litvinov RI; Bassani JL; Purohit PK; Weisel JW
    Sci Adv; 2020 Aug; 6(35):eabc0496. PubMed ID: 32923647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood clot fracture properties are dependent on red blood cell and fibrin content.
    Fereidoonnezhad B; Dwivedi A; Johnson S; McCarthy R; McGarry P
    Acta Biomater; 2021 Jun; 127():213-228. PubMed ID: 33812070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrin clot fracture under cyclic fatigue and variable rate loading.
    Liu S; Bahmani A; Ghezelbash F; Li J
    Acta Biomater; 2024 Mar; 177():265-277. PubMed ID: 38336270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture.
    Tutwiler V; Maksudov F; Litvinov RI; Weisel JW; Barsegov V
    Acta Biomater; 2021 Sep; 131():355-369. PubMed ID: 34233219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics and microstructure of blood plasma clots in shear driven rupture.
    Ramanujam RK; Garyfallogiannis K; Litvinov RI; Bassani JL; Weisel JW; Purohit PK; Tutwiler V
    Soft Matter; 2024 May; 20(21):4184-4196. PubMed ID: 38686609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics, Energetics, and Structural Basis of Rupture of Fibrin Networks.
    Ramanujam RK; Maksudov F; Litvinov RI; Nagaswami C; Weisel JW; Tutwiler V; Barsegov V
    Adv Healthc Mater; 2023 Oct; 12(27):e2300096. PubMed ID: 37611209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow affects the structural and mechanical properties of the fibrin network in plasma clots.
    Eyisoylu H; Hazekamp ED; Cruts J; Koenderink GH; de Maat MPM
    J Mater Sci Mater Med; 2024 Jan; 35(1):8. PubMed ID: 38285167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves.
    Maksudov F; Daraei A; Sesha A; Marx KA; Guthold M; Barsegov V
    Acta Biomater; 2021 Dec; 136():327-342. PubMed ID: 34606991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole blood clots are more resistant to lysis than plasma clots--greater efficacy of rivaroxaban.
    Varin R; Mirshahi S; Mirshahi P; Klein C; Jamshedov J; Chidiac J; Perzborn E; Mirshahi M; Soria C; Soria J
    Thromb Res; 2013 Mar; 131(3):e100-9. PubMed ID: 23313382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of fibrin: impact on clot stability.
    Weisel JW
    J Thromb Haemost; 2007 Jul; 5 Suppl 1():116-24. PubMed ID: 17635717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Procoagulant changes in fibrin clot structure in patients with cirrhosis are associated with oxidative modifications of fibrinogen.
    Hugenholtz GC; Macrae F; Adelmeijer J; Dulfer S; Porte RJ; Lisman T; Ariëns RA
    J Thromb Haemost; 2016 May; 14(5):1054-66. PubMed ID: 26833718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of strut indentation during mechanical thrombectomy in acute ischemic stroke clot analogs.
    Weafer FM; Duffy S; Machado I; Gunning G; Mordasini P; Roche E; McHugh PE; Gilvarry M
    J Neurointerv Surg; 2019 Sep; 11(9):891-897. PubMed ID: 30661030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.
    Piechocka IK; Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2017 May; 15(5):938-949. PubMed ID: 28166607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing interactions of red blood cells and contracting fibrin platelet clots.
    Sun Y; Le H; Lam WA; Alexeev A
    Biophys J; 2023 Nov; 122(21):4123-4134. PubMed ID: 37598293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lytic Susceptibility, Structure, and Mechanical Properties of Fibrin in Systemic Lupus Erythematosus.
    Litvinov RI; Nabiullina RM; Zubairova LD; Shakurova MA; Andrianova IA; Weisel JW
    Front Immunol; 2019; 10():1626. PubMed ID: 31379831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydraulic permeability of blood clots as a function of fibrin and platelet density.
    Wufsus AR; Macera NE; Neeves KB
    Biophys J; 2013 Apr; 104(8):1812-23. PubMed ID: 23601328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Citrullinated fibrinogen forms densely packed clots with decreased permeability.
    Varjú I; Tóth E; Farkas ÁZ; Farkas VJ; Komorowicz E; Feller T; Kiss B; Kellermayer MZ; Szabó L; Wacha A; Bóta A; Longstaff C; Kolev K
    J Thromb Haemost; 2022 Dec; 20(12):2862-2872. PubMed ID: 36083779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, Mechanical, and Lytic Stability of Fibrin and Plasma Coagulum Generated by Staphylocoagulase From
    Farkas ÁZ; Farkas VJ; Szabó L; Wacha A; Bóta A; Csehi L; Kolev K; Thelwell C
    Front Immunol; 2019; 10():2967. PubMed ID: 31921206
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.