These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36642680)

  • 1. Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains.
    Yeo SJ; Ying C; Fullwood MJ; Tergaonkar V
    Trends Genet; 2023 Mar; 39(3):217-232. PubMed ID: 36642680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TADKB: Family classification and a knowledge base of topologically associating domains.
    Liu T; Porter J; Zhao C; Zhu H; Wang N; Sun Z; Mo YY; Wang Z
    BMC Genomics; 2019 Mar; 20(1):217. PubMed ID: 30871473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TADs: Dynamic structures to create stable regulatory functions.
    da Costa-Nunes JA; Noordermeer D
    Curr Opin Struct Biol; 2023 Aug; 81():102622. PubMed ID: 37302180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.
    Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY
    PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary stability of topologically associating domains is associated with conserved gene regulation.
    Krefting J; Andrade-Navarro MA; Ibn-Salem J
    BMC Biol; 2018 Aug; 16(1):87. PubMed ID: 30086749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent evidence that TADs and chromatin loops are dynamic structures.
    Hansen AS; Cattoglio C; Darzacq X; Tjian R
    Nucleus; 2018 Jan; 9(1):20-32. PubMed ID: 29077530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
    Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV
    Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of genome folding into topologically associating domains.
    Szabo Q; Bantignies F; Cavalli G
    Sci Adv; 2019 Apr; 5(4):eaaw1668. PubMed ID: 30989119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions.
    Wang XT; Cui W; Peng C
    Nucleic Acids Res; 2017 Nov; 45(19):e163. PubMed ID: 28977529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of topologically associating domain callers over mammals at high resolution.
    Sefer E
    BMC Bioinformatics; 2022 Apr; 23(1):127. PubMed ID: 35413815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and boundaries.
    An L; Yang T; Yang J; Nuebler J; Xiang G; Hardison RC; Li Q; Zhang Y
    Genome Biol; 2019 Dec; 20(1):282. PubMed ID: 31847870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making sense of the linear genome, gene function and TADs.
    Long HS; Greenaway S; Powell G; Mallon AM; Lindgren CM; Simon MM
    Epigenetics Chromatin; 2022 Jan; 15(1):4. PubMed ID: 35090532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the separation landscape of topological domains for decoding consensus domain organization of the 3D genome.
    Dang D; Zhang SW; Duan R; Zhang S
    Genome Res; 2023 Mar; 33(3):386-400. PubMed ID: 36894325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of loop extrusion in enhancer-mediated gene activation.
    Karpinska MA; Oudelaar AM
    Curr Opin Genet Dev; 2023 Apr; 79():102022. PubMed ID: 36842325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the 2D and 3D structural properties of topologically associating domains.
    Liu T; Wang Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):592. PubMed ID: 31787081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAD cliques predict key features of chromatin organization.
    Liyakat Ali TM; Brunet A; Collas P; Paulsen J
    BMC Genomics; 2021 Jul; 22(1):499. PubMed ID: 34217222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stratifying TAD boundaries pinpoints focal genomic regions of regulation, damage, and repair.
    Chen B; Ren C; Ouyang Z; Xu J; Xu K; Li Y; Guo H; Bai X; Tian M; Xu X; Wang Y; Li H; Bo X; Chen H
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation.
    Paulsen J; Liyakat Ali TM; Nekrasov M; Delbarre E; Baudement MO; Kurscheid S; Tremethick D; Collas P
    Nat Genet; 2019 May; 51(5):835-843. PubMed ID: 31011212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial density of open chromatin: an effective metric for the functional characterization of topologically associated domains.
    Jiang S; Li H; Hong H; Du G; Huang X; Sun Y; Wang J; Tao H; Xu K; Li C; Chen Y; Chen H; Bo X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32987404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.