BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36642680)

  • 1. Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains.
    Yeo SJ; Ying C; Fullwood MJ; Tergaonkar V
    Trends Genet; 2023 Mar; 39(3):217-232. PubMed ID: 36642680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TADKB: Family classification and a knowledge base of topologically associating domains.
    Liu T; Porter J; Zhao C; Zhu H; Wang N; Sun Z; Mo YY; Wang Z
    BMC Genomics; 2019 Mar; 20(1):217. PubMed ID: 30871473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TADs: Dynamic structures to create stable regulatory functions.
    da Costa-Nunes JA; Noordermeer D
    Curr Opin Struct Biol; 2023 Aug; 81():102622. PubMed ID: 37302180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.
    Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY
    PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary stability of topologically associating domains is associated with conserved gene regulation.
    Krefting J; Andrade-Navarro MA; Ibn-Salem J
    BMC Biol; 2018 Aug; 16(1):87. PubMed ID: 30086749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent evidence that TADs and chromatin loops are dynamic structures.
    Hansen AS; Cattoglio C; Darzacq X; Tjian R
    Nucleus; 2018 Jan; 9(1):20-32. PubMed ID: 29077530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
    Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV
    Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of genome folding into topologically associating domains.
    Szabo Q; Bantignies F; Cavalli G
    Sci Adv; 2019 Apr; 5(4):eaaw1668. PubMed ID: 30989119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions.
    Wang XT; Cui W; Peng C
    Nucleic Acids Res; 2017 Nov; 45(19):e163. PubMed ID: 28977529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of topologically associating domain callers over mammals at high resolution.
    Sefer E
    BMC Bioinformatics; 2022 Apr; 23(1):127. PubMed ID: 35413815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and boundaries.
    An L; Yang T; Yang J; Nuebler J; Xiang G; Hardison RC; Li Q; Zhang Y
    Genome Biol; 2019 Dec; 20(1):282. PubMed ID: 31847870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D genome evolution and reorganization in the Drosophila melanogaster species group.
    Torosin NS; Anand A; Golla TR; Cao W; Ellison CE
    PLoS Genet; 2020 Dec; 16(12):e1009229. PubMed ID: 33284803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Making sense of the linear genome, gene function and TADs.
    Long HS; Greenaway S; Powell G; Mallon AM; Lindgren CM; Simon MM
    Epigenetics Chromatin; 2022 Jan; 15(1):4. PubMed ID: 35090532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the separation landscape of topological domains for decoding consensus domain organization of the 3D genome.
    Dang D; Zhang SW; Duan R; Zhang S
    Genome Res; 2023 Mar; 33(3):386-400. PubMed ID: 36894325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of loop extrusion in enhancer-mediated gene activation.
    Karpinska MA; Oudelaar AM
    Curr Opin Genet Dev; 2023 Apr; 79():102022. PubMed ID: 36842325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the 2D and 3D structural properties of topologically associating domains.
    Liu T; Wang Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):592. PubMed ID: 31787081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TAD cliques predict key features of chromatin organization.
    Liyakat Ali TM; Brunet A; Collas P; Paulsen J
    BMC Genomics; 2021 Jul; 22(1):499. PubMed ID: 34217222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation.
    Paulsen J; Liyakat Ali TM; Nekrasov M; Delbarre E; Baudement MO; Kurscheid S; Tremethick D; Collas P
    Nat Genet; 2019 May; 51(5):835-843. PubMed ID: 31011212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial density of open chromatin: an effective metric for the functional characterization of topologically associated domains.
    Jiang S; Li H; Hong H; Du G; Huang X; Sun Y; Wang J; Tao H; Xu K; Li C; Chen Y; Chen H; Bo X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32987404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.