BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 36642733)

  • 1. Metabolic stress constrains microbial L-cysteine production in Escherichia coli by accelerating transposition through mobile genetic elements.
    Heieck K; Arnold ND; Brück TB
    Microb Cell Fact; 2023 Jan; 22(1):10. PubMed ID: 36642733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fitness of Chassis Cells and Metabolic Pathways for l-Cysteine Overproduction in
    Liu H; Wang Y; Hou Y; Li Z
    J Agric Food Chem; 2020 Dec; 68(50):14928-14937. PubMed ID: 33264003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH.
    Yao X; Liu P; Chen B; Wang X; Tao F; Lin Z; Yang X
    Microb Cell Fact; 2022 Apr; 21(1):68. PubMed ID: 35459210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of Insertion Sequences in Plasmids for L-Cysteine Production in
    Heieck K; Brück T
    Genes (Basel); 2023 Jun; 14(7):. PubMed ID: 37510222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentative production of sulfur-containing amino acid with engineering putative l-cystathionine and l-cysteine uptake systems in Escherichia coli.
    Yamazaki S; Ziyatdinov MK; Nonaka G
    J Biosci Bioeng; 2020 Jul; 130(1):14-19. PubMed ID: 32217026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial production of sulfur-containing amino acids using metabolically engineered Escherichia coli.
    Wang L; Guo Y; Shen Y; Yang K; Cai X; Zhang B; Liu Z; Zheng Y
    Biotechnol Adv; 2024; 73():108353. PubMed ID: 38593935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of indole pyruvic acid biosynthesis in Escherichia coli with tdiD.
    Zhu Y; Hua Y; Zhang B; Sun L; Li W; Kong X; Hong J
    Microb Cell Fact; 2017 Jan; 16(1):2. PubMed ID: 28049530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic control analysis enabled the improvement of the L-cysteine production process with Escherichia coli.
    Caballero Cerbon DA; Widmann J; Weuster-Botz D
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):108. PubMed ID: 38212968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic application of atmospheric and room temperature plasma mutagenesis and adaptive laboratory evolution improves the tolerance of Escherichia coli to L-cysteine.
    Yang H; Zhang B; Wu Z; Pan J; Chen L; Xiu X; Cai X; Liu Z; Zheng Y
    Biotechnol J; 2024 Feb; 19(2):e2300648. PubMed ID: 38403408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli.
    Wang X; Li Q; Sun C; Cai Z; Zheng X; Guo X; Ni X; Zhou W; Guo Y; Zheng P; Chen N; Sun J; Li Y; Ma Y
    Microb Cell Fact; 2019 Jun; 18(1):106. PubMed ID: 31186003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for efficient production of l-arginine.
    Hai-De W; Shuai L; Bing-Bing W; Jie L; Jian-Zhong X; Wei-Guo Z
    Adv Appl Microbiol; 2023; 122():127-150. PubMed ID: 37085192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Escherichia coli W3110 for the production of L-methionine.
    Li H; Wang BS; Li YR; Zhang L; Ding ZY; Gu ZH; Shi GY
    J Ind Microbiol Biotechnol; 2017 Jan; 44(1):75-88. PubMed ID: 27844169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production.
    Wang B; Zhang X; Yu X; Cui Z; Wang Z; Chen T; Zhao X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2155-2170. PubMed ID: 30623201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Escherichia coli for l-homoserine production.
    Sun BY; Wang FQ; Zhao J; Tao XY; Liu M; Wei DZ
    J Basic Microbiol; 2023 Feb; 63(2):168-178. PubMed ID: 36284486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways.
    Liu M; Lou J; Gu J; Lyu XM; Wang FQ; Wei DZ
    J Biotechnol; 2020 May; 314-315():1-7. PubMed ID: 32251699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy.
    Liu H; Fang G; Wu H; Li Z; Ye Q
    Biotechnol J; 2018 May; 13(5):e1700695. PubMed ID: 29405609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing Agmatine Production in
    Xu D; Zhang L
    J Agric Food Chem; 2019 Jul; 67(28):7908-7915. PubMed ID: 31268314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of metabolic stress on genome stability of a synthetic biology chassis Escherichia coli K12 strain.
    Couto JM; McGarrity A; Russell J; Sloan WT
    Microb Cell Fact; 2018 Jan; 17(1):8. PubMed ID: 29357936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Engineering of
    Wang X; Qiu C; Chen C; Gao C; Wei W; Song W; Wu J; Liu L; Chen X
    J Agric Food Chem; 2024 May; 72(19):11029-11040. PubMed ID: 38699920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.