These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36642852)

  • 41. Near-Infrared Colloidal Quantum Dots for Efficient and Durable Photoelectrochemical Solar-Driven Hydrogen Production.
    Jin L; AlOtaibi B; Benetti D; Li S; Zhao H; Mi Z; Vomiero A; Rosei F
    Adv Sci (Weinh); 2016 Mar; 3(3):1500345. PubMed ID: 27668151
    [No Abstract]   [Full Text] [Related]  

  • 42. Sensibilization of p-NiO with ZnSe/CdS and CdS/ZnSe quantum dots for photoelectrochemical water reduction.
    Lu C; Drichel A; Chen J; Enders F; Rokicińska A; Kuśtrowski P; Dronskowski R; Boldt K; Slabon A
    Nanoscale; 2021 Jan; 13(2):869-877. PubMed ID: 33355569
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers.
    Huang F; Zhang L; Zhang Q; Hou J; Wang H; Wang H; Peng S; Liu J; Cao G
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34482-34489. PubMed ID: 27936551
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation.
    Wang G; Yang X; Qian F; Zhang JZ; Li Y
    Nano Lett; 2010 Mar; 10(3):1088-92. PubMed ID: 20148567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rational synthesis of novel "giant" CuInTeSe/CdS core/shell quantum dots for optoelectronics.
    Xu JY; Tong X; Besteiro LV; Li X; Hu C; Liu R; Channa AI; Zhao H; Rosei F; Govorov AO; Wang Q; Wang ZM
    Nanoscale; 2021 Sep; 13(36):15301-15310. PubMed ID: 34490860
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single Entity Behavior of CdSe Quantum Dot Aggregates During Photoelectrochemical Detection.
    Subedi P; Parajuli S; Alpuche-Aviles MA
    Front Chem; 2021; 9():733642. PubMed ID: 34568283
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heterostructured Au NPs/CdS/LaBTC MOFs Photoanode for Efficient Photoelectrochemical Water Splitting: Stability Enhancement via CdSe QDs to 2D-CdS Nanosheets Transformation.
    Vaddipalli SR; Sanivarapu SR; Vengatesan S; Lawrence JB; Eashwar M; Sreedhar G
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23049-59. PubMed ID: 27532805
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Precisely Modulating the Photosensitization Efficiency of Transition-Metal Chalcogenide Quantum Dots toward Solar Water Oxidation.
    Hou S; Mo QL; Zhu SC; Li S; Xiao G; Xiao FX
    Inorg Chem; 2022 Jan; 61(2):1188-1194. PubMed ID: 34962790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems.
    McGranahan CR; Wolfe GE; Falca A; Watson DF
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30980-30991. PubMed ID: 34156237
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching.
    Wang Y; Gao C; Ge S; Yu J; Yan M
    Biosens Bioelectron; 2016 Nov; 85():205-211. PubMed ID: 27179135
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural evolution from the CdSSe alloy to the CdS/CdSe core/shell in Cd(S and Se) composite quantum dots and its impact on the performance of sensitized solar cells.
    Fang J; Lv W; Lei Y; Deng J; Zhang P; Huang W
    Dalton Trans; 2021 Oct; 50(41):14672-14683. PubMed ID: 34585707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A self-powered photoelectrochemical biosensor for H
    Çakıroğlu B; Özacar M
    Biosens Bioelectron; 2019 Sep; 141():111385. PubMed ID: 31185417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmonic TiO
    Yang R; Jiang G; Liu J; Wang Y; Jian N; He L; Liu L; Qu L; Wu Y
    Anal Chim Acta; 2021 Apr; 1153():338283. PubMed ID: 33714448
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Efficient Strategy for Boosting Photogenerated Charge Separation by Using Porphyrins as Interfacial Charge Mediators.
    Ning X; Lu B; Zhang Z; Du P; Ren H; Shan D; Chen J; Gao Y; Lu X
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16800-16805. PubMed ID: 31486209
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering the Signal Transduction between CdTe and CdSe Quantum Dots for
    Meng S; Liu D; Li Y; Dong N; Chen T; You T
    J Agric Food Chem; 2022 Oct; 70(42):13583-13591. PubMed ID: 36251948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photoelectrical properties of CdS/CdSe core/shell QDs modified anatase TiO
    Qiu Q; Wang P; Xu L; Wang D; Lin Y; Xie T
    Phys Chem Chem Phys; 2017 Jun; 19(24):15724-15733. PubMed ID: 28597886
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulating the 0D/2D Interface of Hybrid Semiconductors for Enhanced Photoelectrochemical Performances.
    Li F; Benetti D; Zhang M; Feng J; Wei Q; Rosei F
    Small Methods; 2021 Aug; 5(8):e2100109. PubMed ID: 34927862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical Characteristics of ZnS Passivated CdSe/CdS Quantum Dots for High Photostability and Lasing.
    Wang X; Yu J; Chen R
    Sci Rep; 2018 Nov; 8(1):17323. PubMed ID: 30470827
    [TBL] [Abstract][Full Text] [Related]  

  • 59. To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment.
    Pu C; Peng X
    J Am Chem Soc; 2016 Jul; 138(26):8134-42. PubMed ID: 27312799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition.
    Hou T; Zhang L; Sun X; Li F
    Biosens Bioelectron; 2016 Jan; 75():359-64. PubMed ID: 26339933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.