These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 36643183)
1. Forecasting of Covid-19 positive cases in Indonesia using long short-term memory (LSTM). Sunjaya BA; Permai SD; Gunawan AAS Procedia Comput Sci; 2023; 216():177-185. PubMed ID: 36643183 [TBL] [Abstract][Full Text] [Related]
2. Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China. Zhang R; Song H; Chen Q; Wang Y; Wang S; Li Y PLoS One; 2022; 17(1):e0262009. PubMed ID: 35030203 [TBL] [Abstract][Full Text] [Related]
3. Prediction of hepatitis E using machine learning models. Guo Y; Feng Y; Qu F; Zhang L; Yan B; Lv J PLoS One; 2020; 15(9):e0237750. PubMed ID: 32941452 [TBL] [Abstract][Full Text] [Related]
4. Nesting the SIRV model with NAR, LSTM and statistical methods to fit and predict COVID-19 epidemic trend in Africa. Liu XD; Wang W; Yang Y; Hou BH; Olasehinde TS; Feng N; Dong XP BMC Public Health; 2023 Jan; 23(1):138. PubMed ID: 36658494 [TBL] [Abstract][Full Text] [Related]
5. The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China. Zhao D; Zhang H; Cao Q; Wang Z; He S; Zhou M; Zhang R PLoS One; 2022; 17(2):e0262734. PubMed ID: 35196309 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches. Kırbaş İ; Sözen A; Tuncer AD; Kazancıoğlu FŞ Chaos Solitons Fractals; 2020 Sep; 138():110015. PubMed ID: 32565625 [TBL] [Abstract][Full Text] [Related]
7. Comparison of ARIMA model, DNN model and LSTM model in predicting disease burden of occupational pneumoconiosis in Tianjin, China. Lou HR; Wang X; Gao Y; Zeng Q BMC Public Health; 2022 Nov; 22(1):2167. PubMed ID: 36434563 [TBL] [Abstract][Full Text] [Related]
8. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
9. Forecasting COVID-19 Pandemic Using Prophet, ARIMA, and Hybrid Stacked LSTM-GRU Models in India. Sah S; Surendiran B; Dhanalakshmi R; Mohanty SN; Alenezi F; Polat K Comput Math Methods Med; 2022; 2022():1556025. PubMed ID: 35529266 [TBL] [Abstract][Full Text] [Related]
10. Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China. Zhang R; Guo Z; Meng Y; Wang S; Li S; Niu R; Wang Y; Guo Q; Li Y Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34200378 [TBL] [Abstract][Full Text] [Related]
11. The Prediction of Influenza-like Illness and Respiratory Disease Using LSTM and ARIMA. Tsan YT; Chen DY; Liu PY; Kristiani E; Nguyen KLP; Yang CT Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162879 [TBL] [Abstract][Full Text] [Related]
12. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting. Xu D; Zhang Q; Ding Y; Zhang D Environ Sci Pollut Res Int; 2022 Jan; 29(3):4128-4144. PubMed ID: 34403057 [TBL] [Abstract][Full Text] [Related]
13. Multi-Regional Modeling of Cumulative COVID-19 Cases Integrated with Environmental Forest Knowledge Estimation: A Deep Learning Ensemble Approach. Alamrouni A; Aslanova F; Mati S; Maccido HS; Jibril AA; Usman AG; Abba SI Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055559 [TBL] [Abstract][Full Text] [Related]
14. Predicting machine's performance record using the stacked long short-term memory (LSTM) neural networks. Ma M; Liu C; Wei R; Liang B; Dai J J Appl Clin Med Phys; 2022 Mar; 23(3):e13558. PubMed ID: 35170838 [TBL] [Abstract][Full Text] [Related]
15. A comparative study on predicting influenza outbreaks. Zhang J; Nawata K Biosci Trends; 2017 Nov; 11(5):533-541. PubMed ID: 29070762 [TBL] [Abstract][Full Text] [Related]
16. A Comparison: Prediction of Death and Infected COVID-19 Cases in Indonesia Using Time Series Smoothing and LSTM Neural Network. Rasjid ZE; Setiawan R; Effendi A Procedia Comput Sci; 2021; 179():982-988. PubMed ID: 33643496 [TBL] [Abstract][Full Text] [Related]
17. Forecasting Covid-19 Transmission with ARIMA and LSTM Techniques in Morocco. Rguibi MA; Moussa N; Madani A; Aaroud A; Zine-Dine K SN Comput Sci; 2022; 3(2):133. PubMed ID: 35043096 [TBL] [Abstract][Full Text] [Related]
18. Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically significant? Devaraj J; Madurai Elavarasan R; Pugazhendhi R; Shafiullah GM; Ganesan S; Jeysree AK; Khan IA; Hossain E Results Phys; 2021 Feb; 21():103817. PubMed ID: 33462560 [TBL] [Abstract][Full Text] [Related]
19. CNN-LSTM deep learning based forecasting model for COVID-19 infection cases in Nigeria, South Africa and Botswana. Muhammad LJ; Haruna AA; Sharif US; Mohammed MB Health Technol (Berl); 2022; 12(6):1259-1276. PubMed ID: 36406187 [TBL] [Abstract][Full Text] [Related]
20. Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China. Wang G; Wei W; Jiang J; Ning C; Chen H; Huang J; Liang B; Zang N; Liao Y; Chen R; Lai J; Zhou O; Han J; Liang H; Ye L Epidemiol Infect; 2019 Jan; 147():e194. PubMed ID: 31364559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]