BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36643455)

  • 1. Quantum and Classical Evaluations of Carboxylic Acid Bioisosteres: From Capped Moieties to a Drug Molecule.
    Osman AMA; Arabi AA
    ACS Omega; 2023 Jan; 8(1):588-598. PubMed ID: 36643455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Average Electron Density: A Quantitative Tool for Evaluating Non-Classical Bioisosteres of Amides.
    Osman AM; Arabi AA
    ACS Omega; 2024 Mar; 9(11):13172-13182. PubMed ID: 38524460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic and molecular properties of nonclassical bioisosteric replacements of the carboxylic acid group.
    Arabi AA
    Future Med Chem; 2020 Jun; 12(12):1111-1120. PubMed ID: 32400198
    [No Abstract]   [Full Text] [Related]  

  • 4. Routes to drug design via bioisosterism of carboxyl and sulfonamide groups.
    Arabi AA
    Future Med Chem; 2017 Dec; 9(18):2167-2180. PubMed ID: 29120240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bioisosteric similarity of the tetrazole and carboxylate anions: clues from the topologies of the electrostatic potential and of the electron density.
    Matta CF; Arabi AA; Weaver DF
    Eur J Med Chem; 2010 May; 45(5):1868-72. PubMed ID: 20133027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic potentials and average electron densities of bioisosteres in methylsquarate and acetic acid.
    Arabi AA; Matta CF
    Future Med Chem; 2016; 8(4):361-71. PubMed ID: 26976657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization.
    Langdon SR; Ertl P; Brown N
    Mol Inform; 2010 May; 29(5):366-85. PubMed ID: 27463193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Mechanical-Cluster Approach to Solve the Bioisosteric Replacement Problem in Drug Design.
    Losev TV; Gerasimov IS; Panova MV; Lisov AA; Abdyusheva YR; Rusina PV; Zaletskaya E; Stroganov OV; Medvedev MG; Novikov FN
    J Chem Inf Model; 2023 Feb; 63(4):1239-1248. PubMed ID: 36763797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrazoles as non-classical bioisosteres in prolylcarboxypeptidase (PrCP) inhibitors.
    Graham TH; Shu M; Verras A; Chen Q; Garcia-Calvo M; Li X; Lisnock J; Tong X; Tung EC; Wiltsie J; Hale JJ; Pinto S; Shen DM
    Bioorg Med Chem Lett; 2014 Apr; 24(7):1657-60. PubMed ID: 24636945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an ab initio fragment database for bioisosterism: dependence of QCT properties on level of theory, conformation, and chemical environment.
    Devereux M; Popelier PL; McLay IM
    J Comput Chem; 2009 Jun; 30(8):1300-18. PubMed ID: 19003976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BioisoIdentifier: an online free tool to investigate local structural replacements from PDB.
    Zhang T; Sun S; Wang R; Li T; Gan B; Zhang Y
    J Cheminform; 2024 Jan; 16(1):7. PubMed ID: 38218937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioisoteres for carboxylic acids: From ionized isosteres to novel unionized replacements.
    Hall A; Chatzopoulou M; Frost J
    Bioorg Med Chem; 2024 Apr; 104():117653. PubMed ID: 38579492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of fluorine to the construction of bioisosteric elements for the purposes of novel drug discovery.
    Richardson P
    Expert Opin Drug Discov; 2021 Nov; 16(11):1261-1286. PubMed ID: 34074189
    [No Abstract]   [Full Text] [Related]  

  • 14. Bioisosteric matrices for ligands of serotonin receptors.
    Warszycki D; Mordalski S; StaroĊ„ J; Bojarski AJ
    ChemMedChem; 2015 Apr; 10(4):601-5. PubMed ID: 25772514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioisosteric similarity of molecules based on structural alignment and observed chemical replacements in drugs.
    Krier M; Hutter MC
    J Chem Inf Model; 2009 May; 49(5):1280-97. PubMed ID: 19402687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MB-Isoster: A software for bioisosterism simulation.
    Elias TC; de Oliveira HCB; da Silveira NJF
    J Comput Chem; 2018 Nov; 39(29):2481-2487. PubMed ID: 30318630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioisosteric Replacements Extracted from High-Quality Structures in the Protein Databank.
    Seddon MP; Cosgrove DA; Gillet VJ
    ChemMedChem; 2018 Mar; 13(6):607-613. PubMed ID: 29314719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and evaluation of druglike parameters via in silico techniques for a series of heterocyclic monosquarate-amide derivatives as potential carboxylic acid bioisosteres.
    Long N; Le Gresley A; Wozniak A; Brough S; Wren SP
    Bioorg Med Chem; 2024 Jan; 98():117565. PubMed ID: 38142561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the other side of biologically relevant chemical space: insights into carboxylic, sulfonic and phosphonic acid bioisosteric relationships.
    Macchiarulo A; Pellicciari R
    J Mol Graph Model; 2007 Nov; 26(4):728-39. PubMed ID: 17544772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. sc-PDB-Frag: a database of protein-ligand interaction patterns for Bioisosteric replacements.
    Desaphy J; Rognan D
    J Chem Inf Model; 2014 Jul; 54(7):1908-18. PubMed ID: 24991975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.