These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36643455)

  • 21. 2,6-Difluorophenol as a bioisostere of a carboxylic acid: bioisosteric analogues of gamma-aminobutyric acid.
    Qiu J; Stevenson SH; O'Beirne MJ; Silverman RB
    J Med Chem; 1999 Jan; 42(2):329-32. PubMed ID: 9925739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Bioisosteric Substituents by a Deep Neural Network.
    Ertl P
    J Chem Inf Model; 2020 Jul; 60(7):3369-3375. PubMed ID: 32539382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum Isostere Database: a web-based tool using quantum chemical topology to predict bioisosteric replacements for drug design.
    Devereux M; Popelier PL; McLay IM
    J Chem Inf Model; 2009 Jun; 49(6):1497-513. PubMed ID: 19453153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioisosteric Replacement as a Tool in Anti-HIV Drug Design.
    Dick A; Cocklin S
    Pharmaceuticals (Basel); 2020 Feb; 13(3):. PubMed ID: 32121077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The use of bioisosteric groups in lead optimization.
    Olesen PH
    Curr Opin Drug Discov Devel; 2001 Jul; 4(4):471-8. PubMed ID: 11727312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design.
    Hevey R
    Biomimetics (Basel); 2019 Jul; 4(3):. PubMed ID: 31357673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioisosteres and Scaffold Hopping in Medicinal Chemistry.
    Brown N
    Mol Inform; 2014 Jun; 33(6-7):458-62. PubMed ID: 27485983
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Vink G; Nebel JC; Wren SP
    Future Med Chem; 2021 Apr; 13(8):691-700. PubMed ID: 33715419
    [No Abstract]   [Full Text] [Related]  

  • 29. Unearthing novel thiazolidinone building blocks as carboxylic acid bioisosteres.
    Scanlon JJ; Wren SP
    Future Med Chem; 2020 Oct; 12(20):1855-1864. PubMed ID: 33012189
    [No Abstract]   [Full Text] [Related]  

  • 30. Recent Scaffold Hopping Applications in Central Nervous System Drug Discovery.
    Callis TB; Garrett TR; Montgomery AP; Danon JJ; Kassiou M
    J Med Chem; 2022 Oct; 65(20):13483-13504. PubMed ID: 36206553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MolOpt: A Web Server for Drug Design using Bioisosteric Transformation.
    Shan J; Ji C
    Curr Comput Aided Drug Des; 2020; 16(4):460-466. PubMed ID: 31272357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioisosteric-Replacement-Driven Lead Optimization of Tyclopyrazoflor.
    Chen M; Li Z; Shao X; Maienfisch P
    J Agric Food Chem; 2022 Sep; 70(36):11123-11137. PubMed ID: 35561416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elemental exchange: Bioisosteric replacement of phosphorus by boron in drug design.
    Mehta NV; Abhyankar A; Degani MS
    Eur J Med Chem; 2023 Nov; 260():115761. PubMed ID: 37651875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BoBER: web interface to the base of bioisosterically exchangeable replacements.
    Lešnik S; Škrlj B; Eržen N; Bren U; Gobec S; Konc J; Janežič D
    J Cheminform; 2017 Dec; 9(1):62. PubMed ID: 29234984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design.
    Meanwell NA
    J Med Chem; 2018 Jul; 61(14):5822-5880. PubMed ID: 29400967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of Bioisosteres in the Design of Biologically Active Compounds.
    Meanwell NA
    J Agric Food Chem; 2023 Nov; 71(47):18087-18122. PubMed ID: 36961953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres.
    Petersen JG; Bergmann R; Krogsgaard-Larsen P; Balle T; Frølund B
    Neurochem Res; 2014 Jun; 39(6):1005-15. PubMed ID: 24362592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and receptor binding of thiophene bioisosteres of potent GluN2B ligands with a benzo[7]annulene-scaffold.
    Baumeister S; Schepmann D; Wünsch B
    Medchemcomm; 2019 Feb; 10(2):315-325. PubMed ID: 30881618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of the 4-Hydroxytriazole Moiety as a Bioisosteric Tool in the Development of Ionotropic Glutamate Receptor Ligands.
    Sainas S; Temperini P; Farnsworth JC; Yi F; Møllerud S; Jensen AA; Nielsen B; Passoni A; Kastrup JS; Hansen KB; Boschi D; Pickering DS; Clausen RP; Lolli ML
    J Med Chem; 2019 May; 62(9):4467-4482. PubMed ID: 30943028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 5-substituted tetrazoles as bioisosteres of carboxylic acids. Bioisosterism and mechanistic studies on glutathione reductase inhibitors as antimalarials.
    Biot C; Bauer H; Schirmer RH; Davioud-Charvet E
    J Med Chem; 2004 Nov; 47(24):5972-83. PubMed ID: 15537352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.