These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 36643481)

  • 21. Numerical study of copper antimony sulphide (CuSbS
    Obare N; Isoe W; Nalianya A; Mageto M; Odari V
    Heliyon; 2024 Mar; 10(5):e26896. PubMed ID: 38455588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tellurium Doping Inducing Defect Passivation for Highly Effective Antimony Selenide Thin Film Solar Cell.
    Chen G; Li X; Abbas M; Fu C; Su Z; Tang R; Chen S; Fan P; Liang G
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solar power conversion: CuI hole transport layer and Ba
    Ghosh A; Al Hossain Newaz A; Baki AA; Awwad NS; Ibrahium HA; Hossain MS; Rahman Sonic MM; Islam MS; Rahman MK
    RSC Adv; 2024 Jul; 14(33):24066-24081. PubMed ID: 39091371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Efficiency Sb
    Guo H; Zhao C; Xing Y; Tian H; Yan D; Zhang S; Jia X; Qiu J; Yuan N; Ding J
    J Phys Chem Lett; 2021 Dec; 12(51):12352-12359. PubMed ID: 34935382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical Simulation of 30% Efficient Lead-Free Perovskite CsSnGeI
    Sabbah H
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of a high-performance lead-free cesium-based inorganic perovskite solar cell through numerical approach.
    Tulka TK; Alam N; Akhtaruzzaman M; Sobayel K; Hossain MM
    Heliyon; 2022 Nov; 8(11):e11719. PubMed ID: 36425430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vertically Aligned One-Dimensional Crystal-Structured Sb
    Wen X; Lu Z; Yang X; Chen C; Washington MA; Wang GC; Tang J; Zhao Q; Lu TM
    ACS Appl Mater Interfaces; 2023 May; 15(18):22251-22262. PubMed ID: 37126652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active Passivation of Anion Vacancies in Antimony Selenide Film for Efficient Solar Cells.
    Cai Z; Che B; Gu Y; Xiao P; Wu L; Liang W; Zhu C; Chen T
    Adv Mater; 2024 Jul; 36(30):e2404826. PubMed ID: 38743030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved Performance of Thermally Evaporated Sb
    Yao S; Wang J; Cheng J; Fu L; Xie F; Zhang Y; Li L
    ACS Appl Mater Interfaces; 2020 May; 12(21):24112-24124. PubMed ID: 32357294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale Chemical Analysis of Thin Film Solar Cell Interfaces Using Tip-Enhanced Raman Spectroscopy.
    Bienz S; Spaggiari G; Calestani D; Trevisi G; Bersani D; Zenobi R; Kumar N
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14704-14711. PubMed ID: 38494603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure, Morphology, and Photoelectric Performances of Te-Sb
    Ren D; Luo X; Chen S; Zheng Z; Cathelinaud M; Liang G; Ma H; Qiao X; Fan X; Zhang X
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32664516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance evaluation of ZnSnN
    Laidouci A; Mamta ; Singh VN; Dakua PK; Panda DK
    Heliyon; 2023 Oct; 9(10):e20601. PubMed ID: 37842560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Back Interface and Absorber Bulk Deep-Level Trap Optimization Enables Highly Efficient Flexible Antimony Triselenide Solar Cell.
    Yang J; Chen M; Chen G; Hou Y; Su Z; Chen S; Zhao J; Liang G
    Adv Sci (Weinh); 2024 Jun; 11(22):e2310193. PubMed ID: 38509636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Device modeling and numerical study of a double absorber solar cell using a variety of electron transport materials.
    Cheragee SH; Alam MJ
    Heliyon; 2023 Jul; 9(7):e18265. PubMed ID: 37519688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct Hydrothermal Deposition of Antimony Triselenide Films for Efficient Planar Heterojunction Solar Cells.
    Liu D; Tang R; Ma Y; Jiang C; Lian W; Li G; Han W; Zhu C; Chen T
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18856-18864. PubMed ID: 33871973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating the performance of efficient Cu
    Khatun MM; Hosen A; Ahmed SRA
    Heliyon; 2023 Oct; 9(10):e20603. PubMed ID: 37829810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep defects limiting the conversion efficiency of Sb
    Dong S; Li G; Hong J; Qi R; Yang S; Yang P; Sun L; Yue F
    Phys Chem Chem Phys; 2023 Feb; 25(6):4617-4623. PubMed ID: 36723191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive rear surface passivation of superstrate Sb
    Jeong G; Ji S; Choi J; Jung J; Shin B
    Faraday Discuss; 2022 Oct; 239(0):263-272. PubMed ID: 35916303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fundamental Physical Characterization of Sb
    Ren D; Chen S; Cathelinaud M; Liang G; Ma H; Zhang X
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30572-30583. PubMed ID: 32526141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 26.48% efficient and stable FAPbI
    Noman M; Shahzaib M; Jan ST; Shah SN; Khan AD
    RSC Adv; 2023 Jan; 13(3):1892-1905. PubMed ID: 36712640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.