These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36643969)

  • 1. Open SESAME: A Social-Ecological Systems framework for collaborative Adaptive Management and Engagement in coastal restoration and climate adaptation.
    Mulvaney K; Ayvazian S; Chaffee C; Wigand C; Canfield K; Schoell M
    Wetl Ecol Manag; 2022 Dec; 30(6):1291-1302. PubMed ID: 36643969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laying it on thick: Ecosystem effects of sediment placement on a microtidal Rhode Island salt marsh.
    Raposa KB; Bradley M; Chaffee C; Ernst N; Ferguson W; Kutcher TE; McKinney RA; Miller KM; Rasmussen S; Tymkiw E; Wigand C
    Front Environ Sci; 2022 Sep; 10():. PubMed ID: 36507471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A climate change adaptation strategy for management of coastal marsh systems.
    Wigand C; Ardito T; Chaffee C; Ferguson W; Paton S; Raposa K; Vandemoer C; Watson E
    Estuaries Coast; 2017 Jan; 40(3):682-693. PubMed ID: 30271313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementing adaptive management into a climate change adaptation strategy for a drowning New England salt marsh.
    Perry DC; Chaffee C; Wigand C; Thornber C
    J Environ Manage; 2020 Sep; 270():110928. PubMed ID: 32721353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Runnels mitigate marsh drowning in microtidal salt marshes.
    Watson EB; Ferguson W; Champlin LK; White JD; Ernst N; Sylla HA; Wilburn BP; Wigand C
    Front Environ Sci; 2022 Nov; 10():1-17. PubMed ID: 36507472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term impact of sediment addition on plants and invertebrates in a southern California salt marsh.
    McAtee KJ; Thorne KM; Whitcraft CR
    PLoS One; 2020; 15(11):e0240597. PubMed ID: 33151998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Use of Living Shorelines for Stabilization and Nutrient Mitigation in New England.
    Schoell M; Ayvazian S; Cobb D; Grunden D; Chintala M; Gerber-Williams A; Pimenta A; Strobel C; Rocha K
    Ecol Restor; 2023 Jun; 41(2-3):84-98. PubMed ID: 37990651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing long-term outcomes of tidal restoration in New England salt marshes.
    Kutcher TE; Raposa KB
    J Environ Manage; 2023 Jul; 338():117832. PubMed ID: 37023604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estuarine Sediment Microbiomes from a Chronosequence of Restored Urban Salt Marshes.
    Morris N; Alldred M; Zarnoch C; Alter SE
    Microb Ecol; 2023 Apr; 85(3):916-930. PubMed ID: 36826588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presence of the Herbaceous Marsh Species
    Stagg CL; Laurenzano C; Vervaeke WC; Krauss KW; McKee KL
    Plants (Basel); 2022 May; 11(9):. PubMed ID: 35567260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Living shorelines achieve functional equivalence to natural fringe marshes across multiple ecological metrics.
    Isdell RE; Bilkovic DM; Guthrie AG; Mitchell MM; Chambers RM; Leu M; Hershner C
    PeerJ; 2021; 9():e11815. PubMed ID: 34447620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise.
    Donnelly JP; Bertness MD
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14218-23. PubMed ID: 11724926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil microbial community development across a 32-year coastal wetland restoration time series and the relative importance of environmental factors.
    Abbott KM; Quirk T; Fultz LM
    Sci Total Environ; 2022 May; 821():153359. PubMed ID: 35081409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Social Factors Key to Landscape-Scale Coastal Restoration: Lessons Learned from Three U.S. Case Studies.
    DeAngelis BM; Sutton-Grier AE; Colden A; Arkema KK; Baillie CJ; Bennett RO; Benoit J; Blitch S; Chatwin A; Dausman A; Gittman RK; Greening HS; Henkel JR; Houge R; Howard R; Hughes AR; Lowe J; Scyphers SB; Sherwood ET; Westby S; Grabowski JH
    Sustainability; 2020; 12(3):. PubMed ID: 33841922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient coastal landscapes: Rising sea level threatens salt marshes.
    Valiela I; Lloret J; Bowyer T; Miner S; Remsen D; Elmstrom E; Cogswell C; Robert Thieler E
    Sci Total Environ; 2018 Nov; 640-641():1148-1156. PubMed ID: 30021280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coastal marshes provide valuable protection for coastal communities from storm-induced wave, flood, and structural loss in a changing climate.
    Peter Sheng Y; Paramygin VA; Rivera-Nieves AA; Zou R; Fernald S; Hall T; Jacob K
    Sci Rep; 2022 Feb; 12(1):3051. PubMed ID: 35197502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropocene survival of southern New England's salt marshes.
    Watson EB; Raposa KB; Carey JC; Wigand C; Warren RS
    Estuaries Coast; 2017 May; 40(3):617-625. PubMed ID: 30271312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying social factors that undermine support for nature-based coastal management.
    Josephs LI; Humphries AT
    J Environ Manage; 2018 Apr; 212():32-38. PubMed ID: 29427939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controls on resilience and stability in a sediment-subsidized salt marsh.
    Stagg CL; Mendelssohn IA
    Ecol Appl; 2011 Jul; 21(5):1731-44. PubMed ID: 21830714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reef design and site hydrodynamics mediate oyster restoration and marsh stabilization outcomes.
    Wellman EH; Baillie CJ; Puckett BJ; Donaher SE; Trackenberg SN; Gittman RK
    Ecol Appl; 2022 Mar; 32(2):e2506. PubMed ID: 34870355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.