These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Revealing the Local Structure and Dynamics of the Solid Li Ion Conductor Li Duff BB; Corti L; Turner B; Han G; Daniels LM; Rosseinsky MJ; Blanc F Chem Mater; 2024 Aug; 36(16):7703-7718. PubMed ID: 39220613 [TBL] [Abstract][Full Text] [Related]
8. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation. Wohlmuth D; Epp V; Wilkening M Chemphyschem; 2015 Aug; 16(12):2582-93. PubMed ID: 26192263 [TBL] [Abstract][Full Text] [Related]
9. Lithium-Ion Transport in Nanocrystalline Spinel-Type Li[In Gombotz M; Rettenwander D; Wilkening HMR Front Chem; 2020; 8():100. PubMed ID: 32158744 [TBL] [Abstract][Full Text] [Related]
10. Structural Disorder in Li Brinek M; Hiebl C; Hogrefe K; Hanghofer I; Wilkening HMR J Phys Chem C Nanomater Interfaces; 2020 Oct; 124(42):22934-22940. PubMed ID: 33193940 [TBL] [Abstract][Full Text] [Related]
11. Very fast bulk Li ion diffusivity in crystalline Li(1.5)Al(0.5)Ti(1.5)(PO4)3 as seen using NMR relaxometry. Epp V; Ma Q; Hammer EM; Tietz F; Wilkening M Phys Chem Chem Phys; 2015 Dec; 17(48):32115-21. PubMed ID: 26580669 [TBL] [Abstract][Full Text] [Related]
12. Disentangling Cation and Anion Dynamics in Li Forrester FN; Quirk JA; Famprikis T; Dawson JA Chem Mater; 2022 Dec; 34(23):10561-10571. PubMed ID: 36530942 [TBL] [Abstract][Full Text] [Related]
13. Li ion dynamics along the inner surfaces of layer-structured 2H-LixNbS2. Stanje B; Epp V; Nakhal S; Lerch M; Wilkening M ACS Appl Mater Interfaces; 2015 Feb; 7(7):4089-99. PubMed ID: 25633906 [TBL] [Abstract][Full Text] [Related]
14. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes. Ramzy A; Thangadurai V ACS Appl Mater Interfaces; 2010 Feb; 2(2):385-90. PubMed ID: 20356183 [TBL] [Abstract][Full Text] [Related]
15. Lithium-ion spontaneous exchange and synergistic transport in ceramic-liquid hybrid electrolytes for highly efficient lithium-ion transfer. Shi K; Chen L; Wan Z; Biao J; Zhong G; Li X; Yang L; Ma J; Lv W; Ren F; Wang H; Yang Y; Kang F; He YB Sci Bull (Beijing); 2022 May; 67(9):946-954. PubMed ID: 36546029 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. Deng Y; Eames C; Fleutot B; David R; Chotard JN; Suard E; Masquelier C; Islam MS ACS Appl Mater Interfaces; 2017 Mar; 9(8):7050-7058. PubMed ID: 28128548 [TBL] [Abstract][Full Text] [Related]
17. Enhancing Li-Ion Transport in Solid Electrolytes by Confined Water. Li Y; Wang S; Xiao Z; Leng J; Zhang Z; Gao T; Tang Z Small; 2022 Jul; 18(29):e2201094. PubMed ID: 35695333 [TBL] [Abstract][Full Text] [Related]
18. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
19. Extremely Fast Interfacial Li Ion Dynamics in Crystalline LiTFSI Combined with EMIM-TFSI. Stanje B; Wilkening HMR ACS Phys Chem Au; 2022 Mar; 2(2):136-142. PubMed ID: 36855508 [TBL] [Abstract][Full Text] [Related]
20. Design principles for solid-state lithium superionic conductors. Wang Y; Richards WD; Ong SP; Miara LJ; Kim JC; Mo Y; Ceder G Nat Mater; 2015 Oct; 14(10):1026-31. PubMed ID: 26280225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]