These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36644589)

  • 1. Isotopic production cross sections in proton-16O and proton-12C interactions for energies from 10 MeV/u to 100 GeV/u.
    Cucinotta FA; Pak S
    Nucl Instrum Methods Phys Res B; 2023 Jan; 534():26-34. PubMed ID: 36644589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of Total, Absorption, and
    Yan C; Saganti PB; Cucinotta FA
    Nucl Instrum Methods Phys Res B; 2021 Sep; 502():136-141. PubMed ID: 34898771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear fragmentation cross-sections of 400 A MeV 36Ar and 40Ar in collisions with light and heavy target nuclei.
    Iancu G; Flesch F; Heinrich W
    Radiat Meas; 2005 Oct; 39(5):525-33. PubMed ID: 16094776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cosmic ray radiation effects caused by proton-induced fragmentation.
    Heinrich W; Streibel T; Ahrendt M; Rocher H; Huntrup G
    Radiat Meas; 1997; 28(1-6):537-42. PubMed ID: 11541798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical model analyses of 1.65 A GeV argon fragmentation: cross sections and momentum distributions.
    Townsend LW; Khan F; Tripathi RK
    Phys Rev C Nucl Phys; 1993 Dec; 48(6):2912-9. PubMed ID: 9969168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate universal parameterization of absorption cross sections.
    Tripathi RK; Cucinotta FA; Wilson JW
    Nucl Instrum Methods Phys Res B; 1996 Oct; 117(4):347-9. PubMed ID: 11542649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forward production of protons in relativistic 12C-nucleus collisions.
    Cucinotta FA
    J Phys G Nucl Part Phys; 1994 Nov; 20(11):1803-15. PubMed ID: 11542262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical model methods of predicting nuclide production cross sections from heavy ion fragmentation.
    Townsend LW; Ramsey CR; Tripathi RK; Cucinotta FA; Norbury JW
    Nucl Instrum Methods Phys Res B; 1999 Mar; 149(4):401-13. PubMed ID: 11541652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microdosimetry of proton and carbon ions.
    Liamsuwan T; Hultqvist M; Lindborg L; Uehara S; Nikjoo H
    Med Phys; 2014 Aug; 41(8):081721. PubMed ID: 25086531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluence correction factors in plastic phantoms for clinical proton beams.
    Palmans H; Symons JE; Denis JM; de Kock EA; Jones DT; Vynckier S
    Phys Med Biol; 2002 Sep; 47(17):3055-71. PubMed ID: 12361210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear fragmentation of high-energy heavy-ion beams in water.
    Schardt D; Schall I; Geissel H; Irnich H; Kraft G; Magel A; Mohar MF; Munzenberg G; Nickel F; Scheidenberger C; Schwab W; Sihver L
    Adv Space Res; 1996; 17(2):87-94. PubMed ID: 11540376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological Impact of Target Fragments on Proton Treatment Plans: An Analysis Based on the Current Cross-Section Data and a Full Mixed Field Approach.
    Bellinzona EV; Grzanka L; Attili A; Tommasino F; Friedrich T; Krämer M; Scholz M; Battistoni G; Embriaco A; Chiappara D; Cirrone GAP; Petringa G; Durante M; Scifoni E
    Cancers (Basel); 2021 Sep; 13(19):. PubMed ID: 34638254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragmentation of 200 and 244 MeV/u carbon beams in thick tissue-like absorbers.
    Golovchenko AN; Skvarc J; Ilic R; Sihver L; Bamblevski VP; Tretyakova SP; Schardt D; Tripathi RK; Wilson JW; Bimbot R
    Nucl Instrum Methods Phys Res B; 1999; 159(4):233-40. PubMed ID: 11542804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical model analyses of heavy ion fragmentation in hydrogen targets.
    Townsend LW
    Phys Rev C Nucl Phys; 1994 Jun; 49(6):3158-61. PubMed ID: 9969594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT.
    Gudowska I; Sobolevsky N; Andreo P; Belkić D; Brahme A
    Phys Med Biol; 2004 May; 49(10):1933-58. PubMed ID: 15214534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragmentation cross sections of 16O between 0.9 and 200 GeV/nucleon.
    Hirzebruch SE; Heinrich W; Tolstov KD; Kovalenko AD; Benton EV
    Phys Rev C Nucl Phys; 1992 Oct; 46(4):1487-94. PubMed ID: 9968258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Monte Carlo track structure code for low-energy protons in water.
    Uehara S; Toburen LH; Nikjoo H
    Int J Radiat Biol; 2001 Feb; 77(2):139-54. PubMed ID: 11236921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phy-X/ZeXTRa: a software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions.
    Özpolat ÖF; Alım B; Şakar E; Büyükyıldız M; Kurudirek M
    Radiat Environ Biophys; 2020 May; 59(2):321-329. PubMed ID: 31960126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons.
    Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J
    Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of L-shell X-ray production cross sections in
    Ejeh EO; Hlatshwayo TT; Madhuku M; Legodi M; Msimanga M
    Appl Radiat Isot; 2021 Nov; 177():109930. PubMed ID: 34507105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.