These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36644643)

  • 41. The role of robotic endovascular catheters in fenestrated stent grafting.
    Riga CV; Cheshire NJ; Hamady MS; Bicknell CD
    J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tool guidance using a compact robotic assistant.
    Nelson CA; Zhang X; Buettner S; Oleynikov D
    J Robot Surg; 2009 Oct; 3(3):171. PubMed ID: 27638374
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and Modeling of a Sub-2 mm Steerable Neuroendoscopic Grasping Tool.
    Brumfiel TA; Qi R; Chapman C; Rashid A; Melkote SN; Chern JJ; Desai JP
    IEEE Trans Med Robot Bionics; 2023 Nov; 5(4):1105-1109. PubMed ID: 38912526
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Towards synergistic control of hands-on needle insertion with automated needle steering for MRI-guided prostate interventions.
    Wartenberg M; Patel N; Gang Li ; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5116-5119. PubMed ID: 28269418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robotic-assisted minimally invasive surgery for gynecologic and urologic oncology: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(27):1-118. PubMed ID: 23074405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brachytherapy--an example of a urological minimally invasive robotic procedure.
    Davies BL; Harris SJ; Dibble E
    Int J Med Robot; 2004 Jun; 1(1):88-96. PubMed ID: 17520600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experience of robotic catheter ablation in humans using a novel remotely steerable catheter sheath.
    Kanagaratnam P; Koa-Wing M; Wallace DT; Goldenberg AS; Peters NS; Davies DW
    J Interv Card Electrophysiol; 2008 Jan; 21(1):19-26. PubMed ID: 18202905
    [TBL] [Abstract][Full Text] [Related]  

  • 49. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.
    Hussain S; Jamwal PK; Ghayesh MH
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1224-1234. PubMed ID: 29065774
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinematic design considerations for minimally invasive surgical robots: an overview.
    Kuo CH; Dai JS; Dasgupta P
    Int J Med Robot; 2012 Jun; 8(2):127-45. PubMed ID: 22228671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Jacobian-Based Task-Space Motion Planning for MRI-Actuated Continuum Robots.
    Greigarn T; Poirot NL; Xu X; Çavuşoğlu MC
    IEEE Robot Autom Lett; 2019 Jan; 4(1):145-152. PubMed ID: 30547093
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots.
    Gilbert HB; Webster RJ
    IEEE Robot Autom Lett; 2016; 1(1):98-105. PubMed ID: 27648473
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Beyond Constant Curvature: A New Mechanics Model for Unidirectional Notched-Tube Continuum Wrists.
    Pacheco NE; Gafford JB; Atalla MA; Webster RJ; Fichera L
    J Med Robot Res; 2021; 6(1-2):. PubMed ID: 36017195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Attaining high bending stiffness by full actuation in steerable minimally invasive surgical instruments.
    Jelínek F; Gerboni G; Henselmans PW; Pessers R; Breedveld P
    Minim Invasive Ther Allied Technol; 2015 Apr; 24(2):77-85. PubMed ID: 25263681
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robot-assisted catheter manipulation for intracardiac navigation.
    Ganji Y; Janabi-Sharifi F; Cheema AN
    Int J Comput Assist Radiol Surg; 2009 Jun; 4(4):307-15. PubMed ID: 20033578
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of Initial Experience with Transrectal Magnetic Resonance Imaging Cognitive Guided Micro-Ultrasound Biopsies versus Established Transperineal Robotic Ultrasound Magnetic Resonance Imaging Fusion Biopsies for Prostate Cancer.
    Claros OR; Tourinho-Barbosa RR; Fregeville A; Gallardo AC; Muttin F; Carneiro A; Stabile A; Moschini M; Macek P; Cathala N; Mombet A; Sanchez-Salas R; Cathelineau X
    J Urol; 2020 May; 203(5):918-925. PubMed ID: 31821099
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Current and emerging robot-assisted endovascular catheterization technologies: a review.
    Rafii-Tari H; Payne CJ; Yang GZ
    Ann Biomed Eng; 2014 Apr; 42(4):697-715. PubMed ID: 24281653
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robotic surgery: new robots and finally some real competition!
    Rao PP
    World J Urol; 2018 Apr; 36(4):537-541. PubMed ID: 29427003
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrasound probe and needle-guide calibration for robotic ultrasound scanning and needle targeting.
    Kim C; Chang D; Petrisor D; Chirikjian G; Han M; Stoianovici D
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1728-34. PubMed ID: 23358940
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robotic Applications in Orthodontics: Changing the Face of Contemporary Clinical Care.
    Adel S; Zaher A; El Harouni N; Venugopal A; Premjani P; Vaid N
    Biomed Res Int; 2021; 2021():9954615. PubMed ID: 34222490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.