These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36644663)
1. Predicting readmission to the cardiovascular intensive care unit using recurrent neural networks. Kessler S; Schroeder D; Korlakov S; Hettlich V; Kalkhoff S; Moazemi S; Lichtenberg A; Schmid F; Aubin H Digit Health; 2023; 9():20552076221149529. PubMed ID: 36644663 [TBL] [Abstract][Full Text] [Related]
2. Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. Lin YW; Zhou Y; Faghri F; Shaw MJ; Campbell RH PLoS One; 2019; 14(7):e0218942. PubMed ID: 31283759 [TBL] [Abstract][Full Text] [Related]
3. Explainable time-series deep learning models for the prediction of mortality, prolonged length of stay and 30-day readmission in intensive care patients. Deng Y; Liu S; Wang Z; Wang Y; Jiang Y; Liu B Front Med (Lausanne); 2022; 9():933037. PubMed ID: 36250092 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive evaluation for the prediction of mortality in intensive care units with LSTM networks: patients with cardiovascular disease. Maheshwari S; Agarwal A; Shukla A; Tiwari R Biomed Tech (Berl); 2020 Aug; 65(4):435-446. PubMed ID: 31846424 [TBL] [Abstract][Full Text] [Related]
5. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
6. Predicting High Flow Nasal Cannula Failure in an Intensive Care Unit Using a Recurrent Neural Network With Transfer Learning and Input Data Perseveration: Retrospective Analysis. Pappy G; Aczon M; Wetzel R; Ledbetter D JMIR Med Inform; 2022 Mar; 10(3):e31760. PubMed ID: 35238792 [TBL] [Abstract][Full Text] [Related]
7. Development and validation of an interpretable 3 day intensive care unit readmission prediction model using explainable boosting machines. Hegselmann S; Ertmer C; Volkert T; Gottschalk A; Dugas M; Varghese J Front Med (Lausanne); 2022; 9():960296. PubMed ID: 36082270 [TBL] [Abstract][Full Text] [Related]
8. A Long Short-Term Memory Ensemble Approach for Improving the Outcome Prediction in Intensive Care Unit. Xia J; Pan S; Zhu M; Cai G; Yan M; Su Q; Yan J; Ning G Comput Math Methods Med; 2019; 2019():8152713. PubMed ID: 31827589 [TBL] [Abstract][Full Text] [Related]
9. Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach. Desautels T; Das R; Calvert J; Trivedi M; Summers C; Wales DJ; Ercole A BMJ Open; 2017 Sep; 7(9):e017199. PubMed ID: 28918412 [TBL] [Abstract][Full Text] [Related]
10. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance. Lu H; Ehwerhemuepha L; Rakovski C BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100 [TBL] [Abstract][Full Text] [Related]
11. Early Prediction of Sepsis in EMR Records Using Traditional ML Techniques and Deep Learning LSTM Networks. Saqib M; Sha Y; Wang MD Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4038-4041. PubMed ID: 30441243 [TBL] [Abstract][Full Text] [Related]
12. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models. Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153 [TBL] [Abstract][Full Text] [Related]
13. [Long short-term memory and Logistic regression for mortality risk prediction of intensive care unit patients with stroke]. Deng YH; Jiang Y; Wang ZY; Liu S; Wang YX; Liu BH Beijing Da Xue Xue Bao Yi Xue Ban; 2022 Jun; 54(3):458-467. PubMed ID: 35701122 [TBL] [Abstract][Full Text] [Related]
14. Interpretable recurrent neural network models for dynamic prediction of the extubation failure risk in patients with invasive mechanical ventilation in the intensive care unit. Zeng Z; Tang X; Liu Y; He Z; Gong X BioData Min; 2022 Sep; 15(1):21. PubMed ID: 36163063 [TBL] [Abstract][Full Text] [Related]
15. Predicting ICU Readmission from Electronic Health Records via BERTopic with Long Short Term Memory Network Approach. Chiu CC; Wu CM; Chien TN; Kao LJ; Li C J Clin Med; 2024 Sep; 13(18):. PubMed ID: 39336990 [No Abstract] [Full Text] [Related]
16. Deep Learning vs Traditional Models for Predicting Hospital Readmission among Patients with Diabetes. Hai AA; Weiner MG; Paranjape A; Livshits A; Brown JR; Obradovic Z; Rubin DJ AMIA Annu Symp Proc; 2022; 2022():512-521. PubMed ID: 37128461 [TBL] [Abstract][Full Text] [Related]
17. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing. Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754 [TBL] [Abstract][Full Text] [Related]
18. Predicting ICU readmission using grouped physiological and medication trends. Xue Y; Klabjan D; Luo Y Artif Intell Med; 2019 Apr; 95():27-37. PubMed ID: 30213670 [TBL] [Abstract][Full Text] [Related]
19. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
20. A deep LSTM autoencoder-based framework for predictive maintenance of a proton radiotherapy delivery system. Dou T; Clasie B; Depauw N; Shen T; Brett R; Lu HM; Flanz JB; Jee KW Artif Intell Med; 2022 Oct; 132():102387. PubMed ID: 36207077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]