These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36644663)
21. Predicting hospital readmission for lupus patients: An RNN-LSTM-based deep-learning methodology. Reddy BK; Delen D Comput Biol Med; 2018 Oct; 101():199-209. PubMed ID: 30195164 [TBL] [Abstract][Full Text] [Related]
22. Knowledge Graph Embeddings for ICU readmission prediction. Carvalho RMS; Oliveira D; Pesquita C BMC Med Inform Decis Mak; 2023 Jan; 23(1):12. PubMed ID: 36658526 [TBL] [Abstract][Full Text] [Related]
23. Delirium prediction in the ICU: designing a screening tool for preventive interventions. Bhattacharyya A; Sheikhalishahi S; Torbic H; Yeung W; Wang T; Birst J; Duggal A; Celi LA; Osmani V JAMIA Open; 2022 Jul; 5(2):ooac048. PubMed ID: 35702626 [TBL] [Abstract][Full Text] [Related]
24. Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission. Hu C; Li L; Li Y; Wang F; Hu B; Peng Z Infect Dis Ther; 2022 Aug; 11(4):1695-1713. PubMed ID: 35835943 [TBL] [Abstract][Full Text] [Related]
25. Machine learning predicts mortality in septic patients using only routinely available ABG variables: a multi-centre evaluation. Wernly B; Mamandipoor B; Baldia P; Jung C; Osmani V Int J Med Inform; 2021 Jan; 145():104312. PubMed ID: 33126059 [TBL] [Abstract][Full Text] [Related]
26. Prediction of unplanned 30-day readmission for ICU patients with heart failure. Pishgar M; Theis J; Del Rios M; Ardati A; Anahideh H; Darabi H BMC Med Inform Decis Mak; 2022 May; 22(1):117. PubMed ID: 35501789 [TBL] [Abstract][Full Text] [Related]
27. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation. Khullar S; Singh N Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840 [TBL] [Abstract][Full Text] [Related]
28. Development and Validation of a Prediction Model for Acute Hypotensive Events in Intensive Care Unit Patients. Nakanishi T; Tsuji T; Tamura T; Fujiwara K; Sobue K J Clin Med; 2024 May; 13(10):. PubMed ID: 38792329 [No Abstract] [Full Text] [Related]
29. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
30. [Predicting prolonged length of intensive care unit stay Wu JY; Lin Y; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Dec; 53(6):1163-1170. PubMed ID: 34916699 [TBL] [Abstract][Full Text] [Related]
31. Predicting the Mortality of ICU Patients by Topic Model with Machine-Learning Techniques. Chiu CC; Wu CM; Chien TN; Kao LJ; Qiu JT Healthcare (Basel); 2022 Jun; 10(6):. PubMed ID: 35742138 [TBL] [Abstract][Full Text] [Related]
32. A deep learning approach for sepsis monitoring via severity score estimation. Aşuroğlu T; Oğul H Comput Methods Programs Biomed; 2021 Jan; 198():105816. PubMed ID: 33157471 [TBL] [Abstract][Full Text] [Related]
33. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
34. Development and validation of high definition phenotype-based mortality prediction in critical care units. Sun Y; Kaur R; Gupta S; Paul R; Das R; Cho SJ; Anand S; Boutilier JJ; Saria S; Palma J; Saluja S; McAdams RM; Kaur A; Yadav G; Singh H JAMIA Open; 2021 Jan; 4(1):ooab004. PubMed ID: 33796821 [TBL] [Abstract][Full Text] [Related]
35. SSP: Early prediction of sepsis using fully connected LSTM-CNN model. Rafiei A; Rezaee A; Hajati F; Gheisari S; Golzan M Comput Biol Med; 2021 Jan; 128():104110. PubMed ID: 33227577 [TBL] [Abstract][Full Text] [Related]
36. Interpretability of time-series deep learning models: A study in cardiovascular patients admitted to Intensive care unit. Gandin I; Scagnetto A; Romani S; Barbati G J Biomed Inform; 2021 Sep; 121():103876. PubMed ID: 34325021 [TBL] [Abstract][Full Text] [Related]
37. Sleep Quality Prediction From Wearable Data Using Deep Learning. Sathyanarayana A; Joty S; Fernandez-Luque L; Ofli F; Srivastava J; Elmagarmid A; Arora T; Taheri S JMIR Mhealth Uhealth; 2016 Nov; 4(4):e125. PubMed ID: 27815231 [TBL] [Abstract][Full Text] [Related]
38. Identifying the need for infection-related consultations in intensive care patients using machine learning models. Zwerwer LR; Luz CF; Soudis D; Giudice N; Nijsten MWN; Glasner C; Renes MH; Sinha B Sci Rep; 2024 Jan; 14(1):2317. PubMed ID: 38282072 [TBL] [Abstract][Full Text] [Related]
39. LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock. Fagerström J; Bång M; Wilhelms D; Chew MS Sci Rep; 2019 Oct; 9(1):15132. PubMed ID: 31641162 [TBL] [Abstract][Full Text] [Related]
40. Taming the Chaos in Neural Network Time Series Predictions. Raubitzek S; Neubauer T Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828122 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]