BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36644788)

  • 1. Effects of surface patterning and topography on the cellular functions of tissue engineered scaffolds with special reference to 3D bioprinting.
    Adhikari J; Roy A; Chanda A; D A G; Thomas S; Ghosh M; Kim J; Saha P
    Biomater Sci; 2023 Feb; 11(4):1236-1269. PubMed ID: 36644788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting.
    Mora-Boza A; Lopez-Donaire ML
    Adv Exp Med Biol; 2018; 1058():221-245. PubMed ID: 29691824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture.
    Ma X; Yu C; Wang P; Xu W; Wan X; Lai CSE; Liu J; Koroleva-Maharajh A; Chen S
    Biomaterials; 2018 Dec; 185():310-321. PubMed ID: 30265900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of tissue formed in vivo are affected by 3D-bioplotted scaffold microarchitecture and correlate with ECM collagen fiber alignment.
    Huebner P; Warren PB; Chester D; Spang JT; Brown AC; Fisher MB; Shirwaiker RA
    Connect Tissue Res; 2020 Mar; 61(2):190-204. PubMed ID: 31345062
    [No Abstract]   [Full Text] [Related]  

  • 7. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive Three-Dimensional
    Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.
    Gao G; Hubbell K; Schilling AF; Dai G; Cui X
    Methods Mol Biol; 2017; 1612():391-398. PubMed ID: 28634958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decellularized ECM-derived bioinks: Prospects for the future.
    Kabirian F; Mozafari M
    Methods; 2020 Jan; 171():108-118. PubMed ID: 31051254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges.
    Zandrini T; Florczak S; Levato R; Ovsianikov A
    Trends Biotechnol; 2023 May; 41(5):604-614. PubMed ID: 36513545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A
    Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue.
    Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application.
    Zhang Y; Li G; Wang J; Zhou F; Ren X; Su J
    Small; 2024 Feb; 20(8):e2302506. PubMed ID: 37814373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation.
    Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for 3D bioprinting of spheroids: A comprehensive review.
    Banerjee D; Singh YP; Datta P; Ozbolat V; O'Donnell A; Yeo M; Ozbolat IT
    Biomaterials; 2022 Dec; 291():121881. PubMed ID: 36335718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
    Pati F; Cho DW
    Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.