These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36644814)

  • 1. Efficient AC electrothermal flow (ACET) on-chip for enhanced immunoassays.
    Draz MS; Uning K; Dupouy D; Gijs MAM
    Lab Chip; 2023 Mar; 23(6):1637-1648. PubMed ID: 36644814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofluid pumping and mixing by an AC electrothermal micropump embedded with a spiral microelectrode pair in a cylindrical microchannel.
    Gao X; Li Y
    Electrophoresis; 2018 Dec; 39(24):3156-3170. PubMed ID: 30194859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation analysis of rectifying microfluidic mixing with field-effect-tunable electrothermal induced flow.
    Liu W; Ren Y; Tao Y; Yao B; Li Y
    Electrophoresis; 2018 Mar; 39(5-6):779-793. PubMed ID: 28873212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow.
    Wu Y; Ren Y; Jiang H
    Electrophoresis; 2017 Jan; 38(2):258-269. PubMed ID: 27387819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustofluidic large-scale mixing for enhanced microfluidic immunostaining for tissue diagnostics.
    Draz MS; Dupouy D; Gijs MAM
    Lab Chip; 2023 Jul; 23(14):3258-3271. PubMed ID: 37365861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-plane microvortices micromixer-based AC electrothermal for testing drug induced death of tumor cells.
    Lang Q; Ren Y; Hobson D; Tao Y; Hou L; Jia Y; Hu Q; Liu J; Zhao X; Jiang H
    Biomicrofluidics; 2016 Nov; 10(6):064102. PubMed ID: 27917250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Pumping and Mixing of Biological Fluids in a Double-Array Electrothermal Microfluidic Device.
    Salari A; Dalton C
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30696037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
    Ng WY; Goh S; Lam YC; Yang C; Rodríguez I
    Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid mixing with high-throughput in a semi-active semi-passive micromixer.
    Kunti G; Bhattacharya A; Chakraborty S
    Electrophoresis; 2017 May; 38(9-10):1310-1317. PubMed ID: 28256732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of microchannel geometry for effective on-chip biofluid delivery by AC electrothermal effect.
    Yuan Q; Huang J; Wu JJ; Islam N
    Electrophoresis; 2022 Nov; 43(21-22):2130-2140. PubMed ID: 35580142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of COVID-19 detection time by means of electrothermal force.
    Kaziz S; Saad Y; Bouzid M; Selmi M; Belmabrouk H
    Microfluid Nanofluidics; 2021; 25(10):86. PubMed ID: 34548854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of pumping mechanism for non-Newtonian blood flow with AC electrothermal forces in a microchannel by hybrid boundary element method and immersed boundary-lattice Boltzmann method.
    Ren Q
    Electrophoresis; 2018 Jun; 39(11):1329-1338. PubMed ID: 29427440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-directional ACET micropump for on-chip biological applications.
    Vafaie RH; Ghavifekr HB; Van Lintel H; Brugger J; Renaud P
    Electrophoresis; 2016 Mar; 37(5-6):719-26. PubMed ID: 26790840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AC electrothermal enhancement of heterogeneous assays in microfluidics.
    Feldman HC; Sigurdson M; Meinhart CD
    Lab Chip; 2007 Nov; 7(11):1553-9. PubMed ID: 17960285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AC electrothermal manipulation of conductive fluids and particles for lab-chip applications.
    Lian M; Islam N; Wu J
    IET Nanobiotechnol; 2007 Jun; 1(3):36-43. PubMed ID: 17506595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AC Electrothermal Circulatory Pumping Chip for Cell Culture.
    Lang Q; Wu Y; Ren Y; Tao Y; Lei L; Jiang H
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26792-801. PubMed ID: 26558750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of in situ preconcentration for rapid and sensitive nanoparticle detection.
    Yang K; Wu J
    Biomicrofluidics; 2010 Aug; 4(3):. PubMed ID: 20824068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor.
    Koklu A; Giuliani J; Monton C; Beskok A
    Anal Chem; 2020 Jun; 92(11):7762-7769. PubMed ID: 32362110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Study of the Electrothermal Effect on the Kinetic Reaction of Immunoassays for a Microfluidic Biosensor.
    Selmi M; Gazzah MH; Belmabrouk H
    Langmuir; 2016 Dec; 32(50):13305-13312. PubMed ID: 27993020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.