These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36645123)

  • 21. Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices.
    Yong K; Ashraf A; Kang P; Nam S
    Sci Rep; 2016 Apr; 6():24890. PubMed ID: 27118249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of microtiter plate on paper using 96-well plates for wax stamping.
    Borah M; Maheswari D; Dutta HS
    Microfluid Nanofluidics; 2022; 26(12):99. PubMed ID: 36349227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid and alternative fabrication method for microfluidic paper based analytical devices.
    Malekghasemi S; Kahveci E; Duman M
    Talanta; 2016 Oct; 159():401-411. PubMed ID: 27474324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inkjet Pattern-Guided Liquid Templates on Superhydrophobic Substrates for Rapid Prototyping of Microfluidic Devices.
    Lai X; Pu Z; Yu H; Li D
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1817-1824. PubMed ID: 31804059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Office paper and laser printing: a versatile and affordable approach for fabricating paper-based analytical devices with multimodal detection capabilities.
    Sousa LR; Guinati BGS; Maciel LIL; Baldo TA; Duarte LC; Takeuchi RM; Faria RC; Vaz BG; Paixão TRLC; Coltro WKT
    Lab Chip; 2024 Jan; 24(3):467-479. PubMed ID: 38126917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay.
    Cai L; Wang Y; Wu Y; Xu C; Zhong M; Lai H; Huang J
    Analyst; 2014 Sep; 139(18):4593-8. PubMed ID: 25045759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine.
    Zhang H; Smith E; Zhang W; Zhou A
    Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investment casting with FFF (fused filament fabrication)-printed appliances: the intermediate step.
    Krey KF; Ratzmann A
    Quintessence Int; 2021 Jun; 52(7):618-623. PubMed ID: 33749222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bio-sample detection on paper-based devices with inkjet printer-sprayed reagents.
    Liang WH; Chu CH; Yang RJ
    Talanta; 2015 Dec; 145():6-11. PubMed ID: 26459437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel method for fabrication of paper-based microfluidic devices using BSA-ink.
    Walia S; Bhatnagar I; Liu J; Mitra SK; Asthana A
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1617-1622. PubMed ID: 34774599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding wax printing: a simple micropatterning process for paper-based microfluidics.
    Carrilho E; Martinez AW; Whitesides GM
    Anal Chem; 2009 Aug; 81(16):7091-5. PubMed ID: 20337388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.
    Nuchtavorn N; Macka M
    Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using printer ink color to control the behavior of paper microfluidics.
    Potter J; Brisk P; Grover WH
    Lab Chip; 2019 Jun; 19(11):2000-2008. PubMed ID: 31049521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Paper-polymer composite devices with minimal fluorescence background.
    Wang CM; Chen CY; Liao WS
    Anal Chim Acta; 2017 Apr; 963():93-98. PubMed ID: 28335980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Low-Cost Strain Gauge Displacement Sensor Fabricated via Shadow Mask Printing.
    Yi Y; Wang B; Bermak A
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid prototyping of electrochemical lateral flow devices: stencilled electrodes.
    Aller Pellitero M; Kitsara M; Eibensteiner F; del Campo FJ
    Analyst; 2016 Apr; 141(8):2515-22. PubMed ID: 26998899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser-induced selective wax reflow for paper-based microfluidics.
    Zhang Y; Liu J; Wang H; Fan Y
    RSC Adv; 2019 Apr; 9(20):11460-11464. PubMed ID: 35520212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices.
    Dossi N; Toniolo R; Pizzariello A; Impellizzieri F; Piccin E; Bontempelli G
    Electrophoresis; 2013 Jul; 34(14):2085-91. PubMed ID: 23161669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.