These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 36645275)
1. Identification of a TonB-Dependent Receptor Involved in Lanthanide Switch by the Characterization of Laboratory-Adapted Methylosinus trichosporium OB3b. Shiina W; Ito H; Kamachi T Appl Environ Microbiol; 2023 Jan; 89(1):e0141322. PubMed ID: 36645275 [TBL] [Abstract][Full Text] [Related]
2. A Mutagenic Screen Identifies a TonB-Dependent Receptor Required for the Lanthanide Metal Switch in the Type I Methanotroph "Methylotuvimicrobium buryatense" 5GB1C. Groom JD; Ford SM; Pesesky MW; Lidstrom ME J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31085692 [TBL] [Abstract][Full Text] [Related]
3. Multiple Mechanisms for Copper Uptake by Methylosinus trichosporium OB3b in the Presence of Heterologous Methanobactin. Peng P; Gu W; DiSpirito AA; Semrau JD mBio; 2022 Oct; 13(5):e0223922. PubMed ID: 36129259 [TBL] [Abstract][Full Text] [Related]
4. XoxF Acts as the Predominant Methanol Dehydrogenase in the Type I Methanotroph Methylomicrobium buryatense. Chu F; Lidstrom ME J Bacteriol; 2016 Apr; 198(8):1317-25. PubMed ID: 26858104 [TBL] [Abstract][Full Text] [Related]
5. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth. Vu HN; Subuyuj GA; Vijayakumar S; Good NM; Martinez-Gomez NC; Skovran E J Bacteriol; 2016 Apr; 198(8):1250-9. PubMed ID: 26833413 [TBL] [Abstract][Full Text] [Related]
6. Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. Schmitz RA; Picone N; Singer H; Dietl A; Seifert KA; Pol A; Jetten MSM; Barends TRM; Daumann LJ; Op den Camp HJM mBio; 2021 Oct; 12(5):e0170821. PubMed ID: 34544276 [TBL] [Abstract][Full Text] [Related]
7. Carbon source regulation of gene expression in Methylosinus trichosporium OB3b. Farhan Ul Haque M; Gu W; Baral BS; DiSpirito AA; Semrau JD Appl Microbiol Biotechnol; 2017 May; 101(9):3871-3879. PubMed ID: 28108763 [TBL] [Abstract][Full Text] [Related]
8. Isolation and Genomic Characterization of a Proteobacterial Methanotroph Requiring Lanthanides. Kato S; Takashino M; Igarashi K; Kitagawa W Microbes Environ; 2020; 35(1):. PubMed ID: 32037377 [TBL] [Abstract][Full Text] [Related]
9. Marker Exchange Mutagenesis of mxaF, Encoding the Large Subunit of the Mxa Methanol Dehydrogenase, in Methylosinus trichosporium OB3b. Farhan Ul Haque M; Gu W; DiSpirito AA; Semrau JD Appl Environ Microbiol; 2015 Dec; 82(5):1549-1555. PubMed ID: 26712545 [TBL] [Abstract][Full Text] [Related]
10. Two TonB-Dependent Transporters in Methylosinus trichosporium OB3b Are Responsible for Uptake of Different Forms of Methanobactin and Are Involved in the Canonical "Copper Switch". Peng P; Kang-Yun CS; Chang J; Gu W; DiSpirito AA; Semrau JD Appl Environ Microbiol; 2022 Jan; 88(1):e0179321. PubMed ID: 34669437 [TBL] [Abstract][Full Text] [Related]
11. Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b. Farhan Ul Haque M; Kalidass B; Bandow N; Turpin EA; DiSpirito AA; Semrau JD Appl Environ Microbiol; 2015 Nov; 81(21):7546-52. PubMed ID: 26296730 [TBL] [Abstract][Full Text] [Related]
12. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b. Gu W; Farhan Ul Haque M; DiSpirito AA; Semrau JD FEMS Microbiol Lett; 2016 Jul; 363(13):. PubMed ID: 27190151 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional Regulation of Methanol Dehydrogenases in the Methanotrophic Bacterium Methylococcus capsulatus Bath by Soluble and Insoluble Lanthanides. Xie R; Takashino M; Igarashi K; Kitagawa W; Kato S Microbes Environ; 2023; 38(4):. PubMed ID: 38092408 [TBL] [Abstract][Full Text] [Related]
14. Switching Between Methanol Accumulation and Cell Growth by Expression Control of Methanol Dehydrogenase in Ito H; Yoshimori K; Ishikawa M; Hori K; Kamachi T Front Microbiol; 2021; 12():639266. PubMed ID: 33828540 [TBL] [Abstract][Full Text] [Related]
15. Structure and function of the lanthanide-dependent methanol dehydrogenase XoxF from the methanotroph Methylomicrobium buryatense 5GB1C. Deng YW; Ro SY; Rosenzweig AC J Biol Inorg Chem; 2018 Oct; 23(7):1037-1047. PubMed ID: 30132076 [TBL] [Abstract][Full Text] [Related]
16. Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy. Zheng Y; Huang J; Zhao F; Chistoserdova L mBio; 2018 Mar; 9(2):. PubMed ID: 29588409 [TBL] [Abstract][Full Text] [Related]
17. A TonB-Dependent Transporter Is Responsible for Methanobactin Uptake by Methylosinus trichosporium OB3b. Gu W; Farhan Ul Haque M; Baral BS; Turpin EA; Bandow NL; Kremmer E; Flatley A; Zischka H; DiSpirito AA; Semrau JD Appl Environ Microbiol; 2016 Jan; 82(6):1917-1923. PubMed ID: 26773085 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of Methylosinus trichosporium OB3b for methanol production. Taylor A; Molzahn P; Bushnell T; Cheney C; LaJeunesse M; Azizian M; Semprini L J Ind Microbiol Biotechnol; 2018 Mar; 45(3):201-211. PubMed ID: 29350313 [TBL] [Abstract][Full Text] [Related]
20. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. Hwang IY; Hur DH; Lee JH; Park CH; Chang IS; Lee JW; Lee EY J Microbiol Biotechnol; 2015 Mar; 25(3):375-80. PubMed ID: 25563419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]