BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36645389)

  • 1. Comparative study of in-vitro autofluorescence of normal versus non-melanoma-skin-cancer cells at different excitation wavelengths.
    Garbarino F; Scelfo D; Paulone G; Paganelli A; Ulrici A; Magnoni C; Pasquali L
    J Biophotonics; 2023 May; 16(5):e202200361. PubMed ID: 36645389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autofluorescence characterization for the early diagnosis of neoplastic changes in DMBA/TPA-induced mouse skin carcinogenesis.
    Diagaradjane P; Yaseen MA; Yu J; Wong MS; Anvari B
    Lasers Surg Med; 2005 Dec; 37(5):382-95. PubMed ID: 16240416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic characterization of oral epithelial dysplasia and squamous cell carcinoma using multiphoton autofluorescence micro-spectroscopy.
    Pal R; Edward K; Ma L; Qiu S; Vargas G
    Lasers Surg Med; 2017 Nov; 49(9):866-873. PubMed ID: 28677822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autofluorescence excitation-emission matrices for diagnosis of colonic cancer.
    Li BH; Xie SS
    World J Gastroenterol; 2005 Jul; 11(25):3931-4. PubMed ID: 15991296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors.
    Zheng W; Lau W; Cheng C; Soo KC; Olivo M
    Int J Cancer; 2003 Apr; 104(4):477-81. PubMed ID: 12584746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discriminant analysis of autofluorescence spectra for classification of oral lesions in vivo.
    Jayanthi JL; Mallia RJ; Shiny ST; Baiju KV; Mathews A; Kumar R; Sebastian P; Madhavan J; Aparna GN; Subhash N
    Lasers Surg Med; 2009 Jul; 41(5):345-52. PubMed ID: 19533763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy.
    Saraswathy A; Jayasree RS; Baiju KV; Gupta AK; Pillai VP
    Photomed Laser Surg; 2009 Jun; 27(3):425-33. PubMed ID: 19025404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autofluorescence spectroscopy for in vivo diagnosis of DMBA-induced hamster buccal pouch pre-cancers and cancers.
    Wang CY; Tsai T; Chen HC; Chang SC; Chen CT; Chiang CP
    J Oral Pathol Med; 2003 Jan; 32(1):18-24. PubMed ID: 12558954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of oral cancer by light-induced autofluorescence spectroscopy using double excitation wavelengths.
    Wang CY; Chiang HK; Chen CT; Chiang CP; Kuo YS; Chow SN
    Oral Oncol; 1999 Mar; 35(2):144-50. PubMed ID: 10435148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autofluorescence spectrum of skin: component bands and body site variations.
    Na R; Stender IM; Ma L; Wulf HC
    Skin Res Technol; 2000 Aug; 6(3):112-117. PubMed ID: 11428953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence spectroscopy of normal, SV40-transformed human keratinocytes, and carcinoma cells.
    Papadopoulos AJ; Zhadin NN; Steinberg ML; Alfano RR
    Cancer Biochem Biophys; 1999 Jul; 17(1-2):13-23. PubMed ID: 10738898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autofluorescence detection of tumors in the human lung--spectroscopical measurements in situ, in an in vivo model and in vitro.
    Hüttenberger D; Gabrecht T; Wagnières G; Weber B; Linder A; Foth HJ; Freitag L
    Photodiagnosis Photodyn Ther; 2008 Jun; 5(2):139-47. PubMed ID: 19356645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-induced autofluorescence spectral ratio reference standard for early discrimination of oral cancer.
    Mallia RJ; Thomas SS; Mathews A; Kumar R; Sebastian P; Madhavan J; Subhash N
    Cancer; 2008 Apr; 112(7):1503-12. PubMed ID: 18260154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and microscopic characteristics of human skin autofluorescence emission.
    Zeng H; MacAulay C; McLean DI; Palcic B
    Photochem Photobiol; 1995 Jun; 61(6):639-45. PubMed ID: 7568410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autofluorescence spectroscopy and multivariate analysis for predicting the induced damages to other organs due to liver fibrosis.
    Nazeer SS; Sreedevi TP; Jayasree RS
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Aug; 257():119741. PubMed ID: 33872953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin.
    Masters BR; So PT; Gratton E
    Biophys J; 1997 Jun; 72(6):2405-12. PubMed ID: 9168018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Applying patial least-squares discriminant analysis on autofluorescence spectra to identify gastric cancer].
    Shi XF; Ma J; Mao WZ; Li Y; Zheng RE; Meng JW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):295-8. PubMed ID: 16826910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H.
    Villette S; Pigaglio-Deshayes S; Vever-Bizet C; Validire P; Bourg-Heckly G
    Photochem Photobiol Sci; 2006 May; 5(5):483-92. PubMed ID: 16685326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics.
    Silveira FL; Pacheco MT; Bodanese B; Pasqualucci CA; Zângaro RA; Silveira L
    Lasers Surg Med; 2015 Jan; 47(1):6-16. PubMed ID: 25583686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Oxidation-Induced Autofluorescence Hypothesis: Red Edge Excitation and Implications for Metabolic Imaging.
    Semenov AN; Yakimov BP; Rubekina AA; Gorin DA; Drachev VP; Zarubin MP; Velikanov AN; Lademann J; Fadeev VV; Priezzhev AV; Darvin ME; Shirshin EA
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.