BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36645389)

  • 21. Discrimination among melanoma, nevi, and normal skin by using synchronous luminescence spectroscopy.
    Zeković I; Dramićanin T; Lenhardt L; Bandić J; Dramićanin MD
    Appl Spectrosc; 2014; 68(8):823-30. PubMed ID: 25061783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of normal and malignant laryngeal tissue by autofluorescence imaging technique.
    Palasz Z; Grobelny A; Pawlik E; Fraczek M; Zalesska-Krecicka M; Klimczak A; Krecicki T
    Auris Nasus Larynx; 2003 Dec; 30(4):385-9. PubMed ID: 14656564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of plasmonic gold nanoparticles on benign and malignant cellular autofluorescence: a novel probe for fluorescence based detection of cancer.
    El-Sayed I; Huang X; Macheret F; Humstoe JO; Kramer R; El-Sayed M
    Technol Cancer Res Treat; 2007 Oct; 6(5):403-12. PubMed ID: 17877428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral characteristics of autofluorescence and second harmonic generation from ex vivo human skin induced by femtosecond laser and visible lasers.
    Chen J; Zhuo S; Luo T; Jiang X; Zhao J
    Scanning; 2006; 28(6):319-26. PubMed ID: 17181133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autofluorescence spectroscopic differentiation between normal and cancerous colorectal tissues by means of a two-peak ratio algorithm.
    Wang CY; Lin JK; Chen BF; Chiang HK
    J Formos Med Assoc; 1999 Dec; 98(12):837-43. PubMed ID: 10634024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical diagnosis of oral lichen planus: A clinical study on the use of autofluorescence spectroscopy combined with multivariate analysis.
    Ramesh S; Nazeer SS; Thomas S; Vivek V; Jayasree RS
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119240. PubMed ID: 33310275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Fluorescence diagnostics of tumors].
    Rotomskis R; Streckyte G
    Medicina (Kaunas); 2004; 40(12):1219-30. PubMed ID: 15630350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autofluorescence spectroscopy in the differentiation of laryngeal epithelial lesions - preliminary results.
    Winiarski P; Szewczyk-Golec K; Orłowski P; Kałużna E; Wamka M; Mackiewicz-Nartowicz H; Sinkiewicz A; Fisz JJ
    Acta Otolaryngol; 2016 Jun; 136(6):580-4. PubMed ID: 26881757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo autofluorescence spectroscopy of oral premalignant and malignant lesions: distortion of fluorescence intensity by submucous fibrosis.
    Tsai T; Chen HM; Wang CY; Tsai JC; Chen CT; Chiang CP
    Lasers Surg Med; 2003; 33(1):40-7. PubMed ID: 12866120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer.
    Liu-Smith F; Jia J; Zheng Y
    Adv Exp Med Biol; 2017; 996():27-40. PubMed ID: 29124688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diagnostic potential of laser-induced autofluorescence emission in brain tissue.
    Chung YG; Schwartz JA; Gardner CM; Sawaya RE; Jacques SL
    J Korean Med Sci; 1997 Apr; 12(2):135-42. PubMed ID: 9170019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein.
    Huang S; Heikal AA; Webb WW
    Biophys J; 2002 May; 82(5):2811-25. PubMed ID: 11964266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Normal-subtracted preprocessing of Raman spectra aiming to discriminate skin actinic keratosis and neoplasias from benign lesions and normal skin tissues.
    Silveira L; Pasqualucci CA; Bodanese B; Pacheco MTT; Zângaro RA
    Lasers Med Sci; 2020 Jul; 35(5):1141-1151. PubMed ID: 31853808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of Methionine Choline Deficient Diet-Induced Steatosis in Mice Using Endogenous Fluorescence Spectroscopy.
    Valor A; Arista Romeu EJ; Escobedo G; Campos-Espinosa A; Romero-Bello II; Moreno-González J; Fabila Bustos DA; Stolik S; de la Rosa Vázquez JM; Guzmán C
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31470620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence spectroscopy as a tool to in vivo discrimination of distinctive skin disorders.
    Maciel VH; Correr WR; Kurachi C; Bagnato VS; da Silva Souza C
    Photodiagnosis Photodyn Ther; 2017 Sep; 19():45-50. PubMed ID: 28363758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autofluorescence of the diabetic and healthy human cornea in vivo at different excitation wavelengths.
    Van Schaik HJ; Alkemade C; Swart W; Van Best JA
    Exp Eye Res; 1999 Jan; 68(1):1-8. PubMed ID: 9986736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo autofluorescence of an unpigmented melanoma in mice. Correlation of spectroscopic properties to microscopic structure.
    Sterenborg HJ; Thomsen S; Jacques SL; Motamedi M
    Melanoma Res; 1995 Aug; 5(4):211-6. PubMed ID: 7496155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery.
    Stelzle F; Knipfer C; Adler W; Rohde M; Oetter N; Nkenke E; Schmidt M; Tangermann-Gerk K
    Sensors (Basel); 2013 Oct; 13(10):13717-31. PubMed ID: 24152930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Native fluorescence spectroscopy of blood plasma in the characterization of oral malignancy.
    Madhuri S; Vengadesan N; Aruna P; Koteeswaran D; Venkatesan P; Ganesan S
    Photochem Photobiol; 2003 Aug; 78(2):197-204. PubMed ID: 12945589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.