These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 36645455)
1. Distinguishing common renal cell carcinomas from benign renal tumors based on machine learning: comparing various CT imaging phases, slices, tumor sizes, and ROI segmentation strategies. Zhou T; Guan J; Feng B; Xue H; Cui J; Kuang Q; Chen Y; Xu K; Lin F; Cui E; Long W Eur Radiol; 2023 Jun; 33(6):4323-4332. PubMed ID: 36645455 [TBL] [Abstract][Full Text] [Related]
3. Differentiation of benign from malignant solid renal lesions using CT-based radiomics and machine learning: comparison with radiologist interpretation. Wentland AL; Yamashita R; Kino A; Pandit P; Shen L; Brooke Jeffrey R; Rubin D; Kamaya A Abdom Radiol (NY); 2023 Feb; 48(2):642-648. PubMed ID: 36370180 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
5. Deep learning and radiomics: the utility of Google TensorFlowâ„¢ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
6. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat. Yang R; Wu J; Sun L; Lai S; Xu Y; Liu X; Ma Y; Zhen X Eur Radiol; 2020 Feb; 30(2):1254-1263. PubMed ID: 31468159 [TBL] [Abstract][Full Text] [Related]
7. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Kocak B; Ates E; Durmaz ES; Ulusan MB; Kilickesmez O Eur Radiol; 2019 Sep; 29(9):4765-4775. PubMed ID: 30747300 [TBL] [Abstract][Full Text] [Related]
8. Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics. Cui E; Li Z; Ma C; Li Q; Lei Y; Lan Y; Yu J; Zhou Z; Li R; Long W; Lin F Eur Radiol; 2020 May; 30(5):2912-2921. PubMed ID: 32002635 [TBL] [Abstract][Full Text] [Related]
9. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Feng Z; Rong P; Cao P; Zhou Q; Zhu W; Yan Z; Liu Q; Wang W Eur Radiol; 2018 Apr; 28(4):1625-1633. PubMed ID: 29134348 [TBL] [Abstract][Full Text] [Related]
10. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Lin F; Cui EM; Lei Y; Luo LP Abdom Radiol (NY); 2019 Jul; 44(7):2528-2534. PubMed ID: 30919041 [TBL] [Abstract][Full Text] [Related]
12. Differentiating renal epithelioid angiomyolipoma from clear cell carcinoma: using a radiomics model combined with CT imaging characteristics. Kim TM; Ahn H; Lee HJ; Kim MG; Cho JY; Hwang SI; Kim SY Abdom Radiol (NY); 2022 Aug; 47(8):2867-2880. PubMed ID: 35697856 [TBL] [Abstract][Full Text] [Related]
13. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
14. Development and external validation of the multichannel deep learning model based on unenhanced CT for differentiating fat-poor angiomyolipoma from renal cell carcinoma: a two-center retrospective study. Yao H; Tian L; Liu X; Li S; Chen Y; Cao J; Zhang Z; Chen Z; Feng Z; Xu Q; Zhu J; Wang Y; Guo Y; Chen W; Li C; Li P; Wang H; Luo J J Cancer Res Clin Oncol; 2023 Nov; 149(17):15827-15838. PubMed ID: 37672075 [TBL] [Abstract][Full Text] [Related]
15. Small (< 4 cm) Renal Mass: Differentiation of Oncocytoma From Renal Cell Carcinoma on Biphasic Contrast-Enhanced CT. Sasaguri K; Takahashi N; Gomez-Cardona D; Leng S; Schmit GD; Carter RE; Leibovich BC; Kawashima A AJR Am J Roentgenol; 2015 Nov; 205(5):999-1007. PubMed ID: 26496547 [TBL] [Abstract][Full Text] [Related]
16. Fuhrman nuclear grade prediction of clear cell renal cell carcinoma: influence of volume of interest delineation strategies on machine learning-based dynamic enhanced CT radiomics analysis. Luo S; Wei R; Lu S; Lai S; Wu J; Wu Z; Pang X; Wei X; Jiang X; Zhen X; Yang R Eur Radiol; 2022 Apr; 32(4):2340-2350. PubMed ID: 34636962 [TBL] [Abstract][Full Text] [Related]
17. CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma. Demirjian NL; Varghese BA; Cen SY; Hwang DH; Aron M; Siddiqui I; Fields BKK; Lei X; Yap FY; Rivas M; Reddy SS; Zahoor H; Liu DH; Desai M; Rhie SK; Gill IS; Duddalwar V Eur Radiol; 2022 Apr; 32(4):2552-2563. PubMed ID: 34757449 [TBL] [Abstract][Full Text] [Related]
18. Radiologic-Radiomic Machine Learning Models for Differentiation of Benign and Malignant Solid Renal Masses: Comparison With Expert-Level Radiologists. Sun XY; Feng QX; Xu X; Zhang J; Zhu FP; Yang YH; Zhang YD AJR Am J Roentgenol; 2020 Jan; 214(1):W44-W54. PubMed ID: 31553660 [No Abstract] [Full Text] [Related]
19. Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images? Hodgdon T; McInnes MD; Schieda N; Flood TA; Lamb L; Thornhill RE Radiology; 2015 Sep; 276(3):787-96. PubMed ID: 25906183 [TBL] [Abstract][Full Text] [Related]
20. Differentiating Benign From Malignant Cystic Renal Masses: A Feasibility Study of Computed Tomography Texture-Based Machine Learning Algorithms. Miskin N; Qin L; Silverman SG; Shinagare AB J Comput Assist Tomogr; 2023 May-Jun 01; 47(3):376-381. PubMed ID: 37184999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]