These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36645455)

  • 21. An automated surgical decision-making framework for partial or radical nephrectomy based on 3D-CT multi-level anatomical features in renal cell carcinoma.
    Yang H; Wu K; Liu H; Wu P; Yuan Y; Wang L; Liu Y; Zeng H; Li J; Liu W; Wu S
    Eur Radiol; 2023 Nov; 33(11):7532-7541. PubMed ID: 37289245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small renal masses (≤ 4 cm): differentiation of oncocytoma from renal clear cell carcinoma using ratio of lesion to cortex attenuation and aorta-lesion attenuation difference (ALAD) on contrast-enhanced CT.
    Gentili F; Bronico I; Maestroni U; Ziglioli F; Silini EM; Buti S; de Filippo M
    Radiol Med; 2020 Dec; 125(12):1280-1287. PubMed ID: 32385827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does Computed Tomography Still Have Limitations to Distinguish Benign from Malignant Renal Tumors for Radiologists?
    Shin T; Duddalwar VA; Ukimura O; Matsugasumi T; Chen F; Ahmadi N; de Castro Abreu AL; Mimata H; Gill IS
    Urol Int; 2017; 99(2):229-236. PubMed ID: 28268233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of specific contrast-enhanced CT regions of interest to differentiate renal oncocytomas from small clear cell and chromophobe renal cell carcinomas.
    Qu JY; Jiang H; Wang XF; Song XH; Hao CJ
    Diagn Interv Radiol; 2022 Nov; 28(6):555-562. PubMed ID: 36550755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A CT-based radiomics model for predicting renal capsule invasion in renal cell carcinoma.
    Yang L; Gao L; Arefan D; Tan Y; Dan H; Zhang J
    BMC Med Imaging; 2022 Jan; 22(1):15. PubMed ID: 35094674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Texture analysis as a radiomic marker for differentiating renal tumors.
    Yu H; Scalera J; Khalid M; Touret AS; Bloch N; Li B; Qureshi MM; Soto JA; Anderson SW
    Abdom Radiol (NY); 2017 Oct; 42(10):2470-2478. PubMed ID: 28421244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning-Based High-Dimensional Quantitative CT Texture Analysis in Predicting PBRM1 Mutation Status.
    Kocak B; Durmaz ES; Ates E; Ulusan MB
    AJR Am J Roentgenol; 2019 Mar; 212(3):W55-W63. PubMed ID: 30601030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas.
    Kocak B; Durmaz ES; Kaya OK; Kilickesmez O
    Acta Radiol; 2020 Jun; 61(6):856-864. PubMed ID: 31635476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discriminating malignant and benign clinical T1 renal masses on computed tomography: A pragmatic radiomics and machine learning approach.
    Uhlig J; Biggemann L; Nietert MM; Beißbarth T; Lotz J; Kim HS; Trojan L; Uhlig A
    Medicine (Baltimore); 2020 Apr; 99(16):e19725. PubMed ID: 32311963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histogram analysis of small solid renal masses: differentiating minimal fat angiomyolipoma from renal cell carcinoma.
    Chaudhry HS; Davenport MS; Nieman CM; Ho LM; Neville AM
    AJR Am J Roentgenol; 2012 Feb; 198(2):377-83. PubMed ID: 22268181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep Learning Algorithm for Fully Automated Detection of Small (≤4 cm) Renal Cell Carcinoma in Contrast-Enhanced Computed Tomography Using a Multicenter Database.
    Toda N; Hashimoto M; Arita Y; Haque H; Akita H; Akashi T; Gobara H; Nishie A; Yakami M; Nakamoto A; Watadani T; Oya M; Jinzaki M
    Invest Radiol; 2022 May; 57(5):327-333. PubMed ID: 34935652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion.
    Zabihollahy F; Schieda N; Krishna S; Ukwatta E
    Eur Radiol; 2020 Sep; 30(9):5183-5190. PubMed ID: 32350661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preoperative prediction of renal fibrous capsule invasion in clear cell renal cell carcinoma using CT-based radiomics model.
    Zhang Y; Zhao J; Li Z; Yang M; Ye Z
    Br J Radiol; 2024 Sep; 97(1161):1557-1567. PubMed ID: 38897659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An In-vivo Prospective Study of the Diagnostic Yield and Accuracy of Optical Biopsy Compared with Conventional Renal Mass Biopsy for the Diagnosis of Renal Cell Carcinoma: The Interim Analysis.
    Buijs M; Wagstaff PGK; de Bruin DM; Zondervan PJ; Savci-Heijink CD; van Delden OM; van Leeuwen TG; van Moorselaar RJA; de la Rosette JJMCH; Laguna Pes MP
    Eur Urol Focus; 2018 Dec; 4(6):978-985. PubMed ID: 29079496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential diagnosis and prognosis of small renal masses: association with collateral vessels detected using contrast-enhanced computed tomography.
    Yanagi M; Kiriyama T; Akatsuka J; Endo Y; Takeda H; Katsu A; Honda Y; Suzuki K; Nishikawa Y; Ikuma S; Mikami H; Toyama Y; Kimura G; Kondo Y
    BMC Cancer; 2022 Aug; 22(1):856. PubMed ID: 35932010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circularity Index on Contrast-Enhanced Computed Tomography Helps Distinguish Fat-Poor Angiomyolipoma from Renal Cell Carcinoma: Retrospective Analyses of Histologically Proven 257 Small Renal Tumors Less Than 4 cm.
    Kang HS; Park JJ
    Korean J Radiol; 2021 May; 22(5):735-741. PubMed ID: 33660463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CT differentiation of the oncocytoma and renal cell carcinoma based on peripheral tumor parenchyma and central hypodense area characterisation.
    Qu J; Zhang Q; Song X; Jiang H; Ma H; Li W; Wang X
    BMC Med Imaging; 2023 Jan; 23(1):16. PubMed ID: 36707788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis.
    Erdim C; Yardimci AH; Bektas CT; Kocak B; Koca SB; Demir H; Kilickesmez O
    Acad Radiol; 2020 Oct; 27(10):1422-1429. PubMed ID: 32014404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diagnostic accuracy of signal loss in in-phase gradient-echo images for differentiation between small renal cell carcinoma and lipid-poor angiomyolipomas.
    Lima FVA; Elias J; Chahud F; Reis RB; Muglia VF
    Br J Radiol; 2020 Apr; 93(1108):20190975. PubMed ID: 31971819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A CT-based deep learning model for predicting the nuclear grade of clear cell renal cell carcinoma.
    Lin F; Ma C; Xu J; Lei Y; Li Q; Lan Y; Sun M; Long W; Cui E
    Eur J Radiol; 2020 Aug; 129():109079. PubMed ID: 32526669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.