These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 36645478)
1. The impact of leg position on muscle blood flow and oxygenation during low-intensity rhythmic plantarflexion exercise. Marume K; Mugele H; Ueno R; Amin SB; Lesmana HS; Possnig C; Hansen AB; Simpson LL; Lawley JS Eur J Appl Physiol; 2023 May; 123(5):1091-1099. PubMed ID: 36645478 [TBL] [Abstract][Full Text] [Related]
2. Positional differences in reactive hyperemia provide insight into initial phase of exercise hyperemia. Jasperse JL; Shoemaker JK; Gray EJ; Clifford PS J Appl Physiol (1985); 2015 Sep; 119(5):569-75. PubMed ID: 26139221 [TBL] [Abstract][Full Text] [Related]
3. Effects of a pre-workout supplement on hyperemia following leg extension resistance exercise to failure with different resistance loads. Martin JS; Mumford PW; Haun CT; Luera MJ; Muddle TWD; Colquhoun RJ; Feeney MP; Mackey CS; Roberson PA; Young KC; Pascoe DD; DeFreitas JM; Jenkins NDM; Roberts MD J Int Soc Sports Nutr; 2017; 14():38. PubMed ID: 28959158 [TBL] [Abstract][Full Text] [Related]
4. Flow-mediated dilation and exercise-induced hyperaemia in highly trained athletes: comparison of the upper and lower limb vasculature. Walther G; Nottin S; Karpoff L; Pérez-Martin A; Dauzat M; Obert P Acta Physiol (Oxf); 2008 Jun; 193(2):139-50. PubMed ID: 18294338 [TBL] [Abstract][Full Text] [Related]
5. The impact of repeated, local heating-induced increases in blood flow on lower limb endothelial function in young, healthy females. McGarity-Shipley EC; Schmitter SM; Williams JS; King TJ; McPhee IAC; Pyke KE Eur J Appl Physiol; 2021 Nov; 121(11):3017-3030. PubMed ID: 34251539 [TBL] [Abstract][Full Text] [Related]
6. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg. Messere A; Ceravolo G; Franco W; Maffiodo D; Ferraresi C; Roatta S J Appl Physiol (1985); 2017 Dec; 123(6):1451-1460. PubMed ID: 28819006 [TBL] [Abstract][Full Text] [Related]
7. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age. Meneses AL; Nam MCY; Bailey TG; Anstey C; Golledge J; Keske MA; Greaves K; Askew CD Physiol Rep; 2020 Oct; 8(19):e14580. PubMed ID: 33038050 [TBL] [Abstract][Full Text] [Related]
8. Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease. Meneses AL; Nam MCY; Bailey TG; Magee R; Golledge J; Hellsten Y; Keske MA; Greaves K; Askew CD Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1425-H1433. PubMed ID: 30095999 [TBL] [Abstract][Full Text] [Related]
9. Vascular function is related to blood flow during high-intensity, but not low-intensity, knee extension exercise. Hanson BE; Proffit M; Gifford JR J Appl Physiol (1985); 2020 Mar; 128(3):698-708. PubMed ID: 31917628 [TBL] [Abstract][Full Text] [Related]
10. Habitual exercise training in older adults offsets the age-related prolongation in leg vasodilator kinetics during single-limb lower body exercise. Hughes WE; Kruse NT; Ueda K; Casey DP J Appl Physiol (1985); 2018 Sep; 125(3):746-754. PubMed ID: 29856264 [TBL] [Abstract][Full Text] [Related]
11. Regional thermal hyperemia in the human leg: Evidence of the importance of thermosensitive mechanisms in the control of the peripheral circulation. Koch Esteves N; Gibson OR; Khir AW; González-Alonso J Physiol Rep; 2021 Aug; 9(15):e14953. PubMed ID: 34350727 [TBL] [Abstract][Full Text] [Related]
12. Kinetic differences between macro- and microvascular measures of reactive hyperemia. Bartlett MF; Oneglia A; Jaffery M; Manitowabi-Huebner S; Hueber DM; Nelson MD J Appl Physiol (1985); 2020 Nov; 129(5):1183-1192. PubMed ID: 32940560 [TBL] [Abstract][Full Text] [Related]