These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 36646022)
1. In-vivo high-speed biomechanical imaging of the cornea using Corvis ST and digital image correlation. Wang B; Yang L; Cheng J; Wang J; Mei Y Comput Biol Med; 2023 Feb; 153():106540. PubMed ID: 36646022 [TBL] [Abstract][Full Text] [Related]
2. Biomechanics of the keratoconic cornea: Theory, segmentation, pressure distribution, and coupled FE-optimization algorithm. Rahmati SM; Razaghi R; Karimi A J Mech Behav Biomed Mater; 2021 Jan; 113():104155. PubMed ID: 33125958 [TBL] [Abstract][Full Text] [Related]
3. Diagnosis of Forme Fruste Keratoconus Using Corvis ST Sequences with Digital Image Correlation and Machine Learning. Yang L; Qi K; Zhang P; Cheng J; Soha H; Jin Y; Ci H; Zheng X; Wang B; Mei Y; Chen S; Wang J Bioengineering (Basel); 2024 Apr; 11(5):. PubMed ID: 38790296 [TBL] [Abstract][Full Text] [Related]
4. Agreement of Corrected Intraocular Pressure Values Between Corvis ST and Pentacam in Patients With Keratoconus, Subclinical Keratoconus, and Normal Cornea. Chen Y; Rong H; Liu W; Liu G; Du B; Jin C; Wei R Cornea; 2021 Nov; 40(11):1426-1432. PubMed ID: 33734163 [TBL] [Abstract][Full Text] [Related]
5. Accuracy of an Air-Puff Dynamic Tonometry Biomarker to Discriminate the Corneal Biomechanical Response in Patients With Keratoconus. Lombardo G; Alunni-Fegatelli D; Serrao S; Mencucci R; Roszkowska AM; Bernava GM; Vestri A; Aleo D; Lombardo M Cornea; 2024 Mar; 43(3):315-322. PubMed ID: 37964435 [TBL] [Abstract][Full Text] [Related]
6. Determining in vivo elasticity and viscosity with dynamic Scheimpflug imaging analysis in keratoconic and healthy eyes. Wang LK; Tian L; Zheng YP J Biophotonics; 2016 May; 9(5):454-63. PubMed ID: 26755237 [TBL] [Abstract][Full Text] [Related]
7. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus. Koprowski R; Ambrósio R Comput Biol Med; 2015 Nov; 66():170-8. PubMed ID: 26410602 [TBL] [Abstract][Full Text] [Related]
8. CorNet: Autonomous feature learning in raw Corvis ST data for keratoconus diagnosis via residual CNN approach. Zhang P; Yang L; Mao Y; Zhang X; Cheng J; Miao Y; Bao F; Chen S; Zheng Q; Wang J Comput Biol Med; 2024 Apr; 172():108286. PubMed ID: 38493602 [TBL] [Abstract][Full Text] [Related]
9. Dynamic corneal biomechanics in different cell layers: in keratoconus and normal eyes. Alvani A; Hashemi H; Pakravan M; Mahbod M; Amanzadeh K; Seyedian MA; Yaseri M; Jafarzadehpur E; Fotouhi A Ophthalmic Physiol Opt; 2021 Mar; 41(2):414-423. PubMed ID: 33236803 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Ali NQ; Patel DV; McGhee CN Invest Ophthalmol Vis Sci; 2014 May; 55(6):3651-9. PubMed ID: 24833745 [TBL] [Abstract][Full Text] [Related]
11. Application of a scheimpflug-based biomechanical analyser and tomography in the early detection of subclinical keratoconus in chinese patients. Liu Y; Zhang Y; Chen Y BMC Ophthalmol; 2021 Sep; 21(1):339. PubMed ID: 34544392 [TBL] [Abstract][Full Text] [Related]
12. Novel Method of Measuring Corneal Viscoelasticity Using the Corvis ST Tonometer. Boszczyk A; Kasprzak H; Przeździecka-Dołyk J J Clin Med; 2022 Jan; 11(1):. PubMed ID: 35012002 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical properties of the keratoconic cornea: a review. Vellara HR; Patel DV Clin Exp Optom; 2015 Jan; 98(1):31-8. PubMed ID: 25545947 [TBL] [Abstract][Full Text] [Related]
14. [Dynamic Scheimpflug Analyzer (Corvis ST) for measurement of corneal biomechanical parameters : A praxis-related overview]. Herber R; Terai N; Pillunat KR; Raiskup F; Pillunat LE; Spörl E Ophthalmologe; 2018 Aug; 115(8):635-643. PubMed ID: 29767348 [TBL] [Abstract][Full Text] [Related]
15. Reliability analysis of successive Corvis ST® measurements in keratoconus 2 years after accelerated corneal crosslinking compared to untreated keratoconus corneas. Xanthopoulou K; Seitz B; Belin MW; Flockerzi E Graefes Arch Clin Exp Ophthalmol; 2023 Apr; 261(4):1055-1061. PubMed ID: 36305911 [TBL] [Abstract][Full Text] [Related]
16. Selected parameters of the corneal deformation in the Corvis tonometer. Koprowski R; Lyssek-Boron A; Nowinska A; Wylegala E; Kasprzak H; Wrobel Z Biomed Eng Online; 2014 May; 13():55. PubMed ID: 24885525 [TBL] [Abstract][Full Text] [Related]
17. [Examination and discriminant analysis of corneal biomechanics with CorVis ST in keratoconus and subclinical keratoconus]. Wu Y; Li XL; Yang SL; Yan XM; Li HL Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Oct; 51(5):881-886. PubMed ID: 31624393 [TBL] [Abstract][Full Text] [Related]
18. Comparison of waveform-derived corneal stiffness and stress-strain extensometry-derived corneal stiffness using different cross-linking irradiances: an experimental study with air-puff applanation of ex vivo porcine eyes. Herber R; Francis M; Spoerl E; Pillunat LE; Raiskup F; Sinha Roy A Graefes Arch Clin Exp Ophthalmol; 2020 Oct; 258(10):2173-2184. PubMed ID: 32556637 [TBL] [Abstract][Full Text] [Related]
19. Eye retraction and rotation during Corvis ST 'air puff' intraocular pressure measurement and its quantitative analysis. Boszczyk A; Kasprzak H; Jóźwik A Ophthalmic Physiol Opt; 2017 May; 37(3):253-262. PubMed ID: 28439976 [TBL] [Abstract][Full Text] [Related]
20. Cornea Full-field Displacement and Strain Measurement in Vivo Using Three-dimensional Digital Image Correlation. Zhang X; Wang Q; Wang L; Xiao H; Zhang D; Liao R; Zheng Y Optom Vis Sci; 2018 Nov; 95(11):1027-1034. PubMed ID: 30339637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]